These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
573 related articles for article (PubMed ID: 6863402)
1. Isozymes of creatine kinase in mammalian cell cultures. Van Brussel E; Yang JJ; Seraydarian MW J Cell Physiol; 1983 Aug; 116(2):221-6. PubMed ID: 6863402 [TBL] [Abstract][Full Text] [Related]
2. Mitochondrial creatine kinase in mammalian myocardial cells in culture. Seraydarian MW; Yang JJ Adv Myocardiol; 1982; 3():613-20. PubMed ID: 7170446 [TBL] [Abstract][Full Text] [Related]
3. Studies on the control of energy metabolism in mammalian cardiac muscle cells in culture. Seraydarian MW Recent Adv Stud Cardiac Struct Metab; 1975; 8():181-90. PubMed ID: 1215636 [TBL] [Abstract][Full Text] [Related]
4. [Functional characterization of the creatine phosphokinase reactions in heart mitochondria and myofibrils]. Saks VA; Lipina NV; Liulina IV; Chernousova GB; Fetter R; Smirnov VI; Chazov EI Biokhimiia; 1976 Aug; 41(8):1460-70. PubMed ID: 1030648 [TBL] [Abstract][Full Text] [Related]
5. [Abnormalities in mitochondrial creatine kinase activity in cardiomyopathic hamsters]. Matsuo H Hokkaido Igaku Zasshi; 1991 May; 66(3):348-55. PubMed ID: 1885160 [TBL] [Abstract][Full Text] [Related]
6. Is there the creatine kinase equilibrium in working heart cells? Saks VA; Aliev MK Biochem Biophys Res Commun; 1996 Oct; 227(2):360-7. PubMed ID: 8878521 [TBL] [Abstract][Full Text] [Related]
7. Compartmentation of brain-type creatine kinase and ubiquitous mitochondrial creatine kinase in neurons: evidence for a creatine phosphate energy shuttle in adult rat brain. Friedman DL; Roberts R J Comp Neurol; 1994 May; 343(3):500-11. PubMed ID: 7517967 [TBL] [Abstract][Full Text] [Related]
8. Respiratory control and the integration of heart high-energy phosphate metabolism by mitochondrial creatine kinase. Jacobus WE Annu Rev Physiol; 1985; 47():707-25. PubMed ID: 3888084 [TBL] [Abstract][Full Text] [Related]
9. [Ability of a phosphocreatine-myofibrillar creatine kinase system to prevent the rigor tension of myocardial fibers]. Veksler VI; Kapel'ko VI Biofizika; 1985; 30(2):301-5. PubMed ID: 3986231 [TBL] [Abstract][Full Text] [Related]
10. Mathematical model of compartmentalized energy transfer: its use for analysis and interpretation of 31P-NMR studies of isolated heart of creatine kinase deficient mice. Aliev MK; van Dorsten FA; Nederhoff MG; van Echteld CJ; Veksler V; Nicolay K; Saks VA Mol Cell Biochem; 1998 Jul; 184(1-2):209-29. PubMed ID: 9746323 [TBL] [Abstract][Full Text] [Related]
11. [Physiological role of the creatine kinase system and the problem of regulating the activity of mitochondrial creatine kinase]. Lipskaia TIu Nauchnye Doki Vyss Shkoly Biol Nauki; 1986; (9):5-14. PubMed ID: 3535908 [TBL] [Abstract][Full Text] [Related]
12. Compartmentalized energy transfer in cardiomyocytes: use of mathematical modeling for analysis of in vivo regulation of respiration. Aliev MK; Saks VA Biophys J; 1997 Jul; 73(1):428-45. PubMed ID: 9199806 [TBL] [Abstract][Full Text] [Related]
13. Effect of ischemic preconditioning on mitochondrial oxidative phosphorylation and high energy phosphates in rat hearts. Kobara M; Tatsumi T; Matoba S; Yamahara Y; Nakagawa C; Ohta B; Matsumoto T; Inoue D; Asayama J; Nakagawa M J Mol Cell Cardiol; 1996 Feb; 28(2):417-28. PubMed ID: 8729072 [TBL] [Abstract][Full Text] [Related]
14. [A comparative study of the role of creatine phosphokinase isoenzymes in energy metabolism of skeletal and heart muscle]. Saks VA; Seppet EK; Liulina NV Biokhimiia; 1977 Apr; 42(4):579-88. PubMed ID: 870086 [TBL] [Abstract][Full Text] [Related]
15. The importance of the creatine kinase reaction: the concept of metabolic capacitance. Sweeney HL Med Sci Sports Exerc; 1994 Jan; 26(1):30-6. PubMed ID: 8133735 [TBL] [Abstract][Full Text] [Related]
16. Dual regulation of the AMP-activated protein kinase provides a novel mechanism for the control of creatine kinase in skeletal muscle. Ponticos M; Lu QL; Morgan JE; Hardie DG; Partridge TA; Carling D EMBO J; 1998 Mar; 17(6):1688-99. PubMed ID: 9501090 [TBL] [Abstract][Full Text] [Related]
18. The creatine kinase system and cardiomyopathy. Khuchua ZA; Vasiljeva EV; Clark JF; Korchazhkina OV; Branishte T; Kapelko VI; Kuznetsov AV; Ventura-Clapier R; Steinschneider AYa ; Lakomkin VL Am J Cardiovasc Pathol; 1992; 4(3):223-34. PubMed ID: 1298299 [TBL] [Abstract][Full Text] [Related]
19. [Intracellular distribution of creatine kinase isoenzymes in the brains and hearts of rats at different stages of postnatal development]. Iurkov IuA; Alatyrtsev VV; Daĭkhin EI Ontogenez; 1975; 6(4):368-73. PubMed ID: 1215011 [TBL] [Abstract][Full Text] [Related]
20. Intracellular high-energy phosphate transfer in normal and hypertrophied myocardium. Bittl JA; Ingwall JS Circulation; 1987 Jan; 75(1 Pt 2):I96-101. PubMed ID: 2947755 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]