BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 6864917)

  • 21. Genetic polymorphisms of N-acetyltransferase 1 and 2 and risk of cigarette smoking-related bladder cancer.
    Hsieh FI; Pu YS; Chern HD; Hsu LI; Chiou HY; Chen CJ
    Br J Cancer; 1999 Oct; 81(3):537-41. PubMed ID: 10507782
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Urinary bladder cancer in a girl with a slow-acetylator genotype and treated with sulphasalazine.
    Filiadis IF; Georgiou IA; Giannakopoulos X
    Br J Urol; 1998 Feb; 81(2):342-3. PubMed ID: 9488096
    [No Abstract]   [Full Text] [Related]  

  • 23. NAT2 gene polymorphism in bladder cancer: a study from North India.
    Mittal RD; Srivastava DS; Mandhani A
    Int Braz J Urol; 2004; 30(4):279-85; discussion 285-8. PubMed ID: 15679955
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of N-acetyltransferase phenotypes in bladder carcinogenesis: a pharmacogenetic epidemiological approach to bladder cancer.
    Cartwright RA; Glashan RW; Rogers HJ; Ahmad RA; Barham-Hall D; Higgins E; Kahn MA
    Lancet; 1982 Oct; 2(8303):842-5. PubMed ID: 6126711
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Association Between N-acetyltransferase 2 Polymorphism and Bladder Cancer Risk: Results From Studies of the Past Decade and a Meta-Analysis.
    Wu H; Wang X; Zhang L; Mo N; Lv Z
    Clin Genitourin Cancer; 2016 Apr; 14(2):122-9. PubMed ID: 26585839
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Commentary: Reflections on G. M. Lower and colleagues' 1979 study associating slow acetylator phenotype with urinary bladder cancer: meta-analysis, historical refinements of the hypothesis, and lessons learned.
    Rothman N; Garcia-Closas M; Hein DW
    Int J Epidemiol; 2007 Feb; 36(1):23-8. PubMed ID: 17510073
    [No Abstract]   [Full Text] [Related]  

  • 27. Higher DNA adduct levels in urinary bladder and prostate of slow acetylator inbred rats administered 3,2'-dimethyl-4-aminobiphenyl.
    Jiang W; Feng Y; Hein DW
    Toxicol Appl Pharmacol; 1999 May; 156(3):187-94. PubMed ID: 10222311
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genetically determined variability in acetylation and oxidation. Therapeutic implications.
    Clark DW
    Drugs; 1985 Apr; 29(4):342-75. PubMed ID: 2859977
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Relationship between genetic polymorphism of NAT2 and susceptibility to urinary bladder cancer].
    Hao GY; Zhang WD; Chen YH; Zhang DX; Zhang YH
    Zhonghua Zhong Liu Za Zhi; 2004 May; 26(5):283-6. PubMed ID: 15312364
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular pathways in bladder cancer: part 1.
    Bryan RT; Hussain SA; James ND; Jankowski JA; Wallace DM
    BJU Int; 2005 Mar; 95(4):485-90. PubMed ID: 15705065
    [No Abstract]   [Full Text] [Related]  

  • 31. Genetically determined N-acetylation and oxidation capacities in Japanese patients with non-occupational urinary bladder cancer.
    Horai Y; Fujita K; Ishizaki T
    Eur J Clin Pharmacol; 1989; 37(6):581-7. PubMed ID: 2612554
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Refinement of the prediction of N-acetyltransferase 2 (NAT2) phenotypes with respect to enzyme activity and urinary bladder cancer risk.
    Selinski S; Blaszkewicz M; Ickstadt K; Hengstler JG; Golka K
    Arch Toxicol; 2013 Dec; 87(12):2129-39. PubMed ID: 24221535
    [TBL] [Abstract][Full Text] [Related]  

  • 33. N-acetylation phenotype in bladder cancer.
    Woodhouse KW; Adams PC; Clothier A; Mucklow JC; Rawlins MD
    Hum Toxicol; 1982 Oct; 1(4):443-5. PubMed ID: 7173929
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Polymorphic N-acetylation of sulfamethazine and benzidine by human liver: implication for cancer risk?
    Peters JH; Gordon GR; Lin E; Green CE; Tyson CA
    Anticancer Res; 1990; 10(1):225-9. PubMed ID: 2334132
    [TBL] [Abstract][Full Text] [Related]  

  • 35. N-acetylation phenotype and genotype and risk of bladder cancer in benzidine-exposed workers.
    Hayes RB; Bi W; Rothman N; Broly F; Caporaso N; Feng P; You X; Yin S; Woosley RL; Meyer UA
    Carcinogenesis; 1993 Apr; 14(4):675-8. PubMed ID: 8472331
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Acetylation phenotype in patients with cancer of the bladder. Preliminary report].
    Skretowicz J; Polakowski P; Jeromin L; Zasada M; SzymaƄska J; Krajewska B
    Med Pr; 1988; 39(4):241-5. PubMed ID: 3237058
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Epidemiological models of carcinogenesis: the example of bladder cancer.
    Vineis P
    Cancer Epidemiol Biomarkers Prev; 1992; 1(2):149-53. PubMed ID: 1306098
    [TBL] [Abstract][Full Text] [Related]  

  • 38. N-acetyltransferase 2 phenotype but not NAT1*10 genotype affects aminobiphenyl-hemoglobin adduct levels.
    Probst-Hensch NM; Bell DA; Watson MA; Skipper PL; Tannenbaum SR; Chan KK; Ross RK; Yu MC
    Cancer Epidemiol Biomarkers Prev; 2000 Jun; 9(6):619-23. PubMed ID: 10868698
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Acetylation.
    Weber WW
    Birth Defects Orig Artic Ser; 1990; 26(1):43-65. PubMed ID: 2224079
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genetic aberrations of the K-ras proto-oncogene in bladder cancer in Kashmiri population.
    Nanda MS; Sameer AS; Syeed N; Shah ZA; Murtaza I; Siddiqi MA; Ali A
    Urol J; 2010; 7(3):168-73. PubMed ID: 20845292
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.