These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 6865354)

  • 1. Error analysis of a system for measuring three-dimensional joint motion.
    Suntay WJ; Grood ES; Hefzy MS; Butler DL; Noyes FR
    J Biomech Eng; 1983 May; 105(2):127-35. PubMed ID: 6865354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A joint coordinate system for the clinical description of three-dimensional motions: application to the knee.
    Grood ES; Suntay WJ
    J Biomech Eng; 1983 May; 105(2):136-44. PubMed ID: 6865355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An instrumented spatial linkage for measuring knee joint kinematics.
    Rosvold JM; Atarod M; Frank CB; Shrive NG
    Knee; 2016 Jan; 23(1):43-8. PubMed ID: 26471425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mathematical kinematics in engineering of endoprostheses. Evaluation of the results of gait analysis.
    Hoschek J; Weber U; Ladstätter P; Schelske HJ
    Arch Orthop Trauma Surg (1978); 1984; 103(5):342-7. PubMed ID: 6529351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ comparison of A-mode ultrasound tracking system and skin-mounted markers for measuring kinematics of the lower extremity.
    Niu K; Anijs T; Sluiter V; Homminga J; Sprengers A; Marra MA; Verdonschot N
    J Biomech; 2018 Apr; 72():134-143. PubMed ID: 29573792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The importance of position and path repeatability on force at the knee during six-DOF joint motion.
    Darcy SP; Gil JE; Woo SL; Debski RE
    Med Eng Phys; 2009 Jun; 31(5):553-7. PubMed ID: 19129002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mobile Biplane X-Ray Imaging System for Measuring 3D Dynamic Joint Motion During Overground Gait.
    Guan S; Gray HA; Keynejad F; Pandy MG
    IEEE Trans Med Imaging; 2016 Jan; 35(1):326-36. PubMed ID: 26316030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Instrumented measurement of human joint motion.
    Chao EY; Hoffman RR
    ISA Trans; 1978; 17(1):13-9. PubMed ID: 700993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design, calibration and validation of a novel 3D printed instrumented spatial linkage that measures changes in the rotational axes of the tibiofemoral joint.
    Bonny DP; Hull ML; Howell SM
    J Biomech Eng; 2014 Jan; 136(1):011003. PubMed ID: 24064860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel testing platform for assessing knee joint mechanics: a parallel robotic system combined with an instrumented spatial linkage.
    Atarod M; Rosvold JM; Frank CB; Shrive NG
    Ann Biomed Eng; 2014 May; 42(5):1121-32. PubMed ID: 24519725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Skin movement artefact assessment and compensation in the estimation of knee-joint kinematics.
    Lucchetti L; Cappozzo A; Cappello A; Della Croce U
    J Biomech; 1998 Nov; 31(11):977-84. PubMed ID: 9880054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Description and error evaluation of an in vitro knee joint testing system.
    Lewis JL; Lew WD; Schmidt J
    J Biomech Eng; 1988 Aug; 110(3):238-48. PubMed ID: 3172745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of joint kinematics using a conventional clinical single-perspective flat-panel radiography system.
    Seslija P; Teeter MG; Yuan X; Naudie DD; Bourne RB; Macdonald SJ; Peters TM; Holdsworth DW
    Med Phys; 2012 Oct; 39(10):6090-103. PubMed ID: 23039648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of a non-invasive fluoroscopic imaging technique for the measurement of dynamic knee joint motion.
    Li G; Van de Velde SK; Bingham JT
    J Biomech; 2008; 41(7):1616-22. PubMed ID: 18394629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-invasive assessment of soft-tissue artifact and its effect on knee joint kinematics during functional activity.
    Akbarshahi M; Schache AG; Fernandez JW; Baker R; Banks S; Pandy MG
    J Biomech; 2010 May; 43(7):1292-301. PubMed ID: 20206357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimized design of an instrumented spatial linkage that minimizes errors in locating the rotational axes of the tibiofemoral joint: a computational analysis.
    Bonny DP; Hull ML; Howell SM
    J Biomech Eng; 2013 Mar; 135(3):31003. PubMed ID: 24231814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of posture by triangulation using potentiometers.
    Yu CH; Donaldson NN
    Med Eng Phys; 1999 May; 21(4):259-63. PubMed ID: 10514044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tibio-femoral joint contact in healthy and osteoarthritic knees during quasi-static squat: A bi-planar X-ray analysis.
    Zeighami A; Dumas R; Kanhonou M; Hagemeister N; Lavoie F; de Guise JA; Aissaoui R
    J Biomech; 2017 Feb; 53():178-184. PubMed ID: 28118977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A practical solution to reduce soft tissue artifact error at the knee using adaptive kinematic constraints.
    Potvin BM; Shourijeh MS; Smale KB; Benoit DL
    J Biomech; 2017 Sep; 62():124-131. PubMed ID: 28291516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accuracy of mobile biplane X-ray imaging in measuring 6-degree-of-freedom patellofemoral kinematics during overground gait.
    Gray HA; Guan S; Pandy MG
    J Biomech; 2017 May; 57():152-156. PubMed ID: 28454908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.