These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 6865446)

  • 1. Effect of viscosity on enzyme-ligand dissociation. II. Role of the microenvironment.
    Welch GR; Somogyi B; Matkó J; Papp S
    J Theor Biol; 1983 Jan; 100(2):211-38. PubMed ID: 6865446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of viscosity on the apparent decomposition rate on enzyme--ligand complexes.
    Somogyi B; Karasz FE; Trón L; Couchman PR
    J Theor Biol; 1978 Sep; 74(2):209-16. PubMed ID: 713574
    [No Abstract]   [Full Text] [Related]  

  • 3. A theoretical model for calculation of the rate constant of enzyme-substrate complex formation. I. Calculation of rate constant in the case of motionless enzyme molecule without nonspecific intermolecular forces.
    Somogyi B; Damjanovich S
    Acta Biochim Biophys Acad Sci Hung; 1973; 8(3):153-60. PubMed ID: 4784598
    [No Abstract]   [Full Text] [Related]  

  • 4. Relationship between the lifetime of an enzyme-substrate complex and the properties of the molecular environment.
    Somogyi B; Damjanovich S
    J Theor Biol; 1975 Jun; 51(2):393-401. PubMed ID: 1142793
    [No Abstract]   [Full Text] [Related]  

  • 5. Testing and characterizing enzymes and membrane-bound carrier proteins acting on amphipathic ligands in the presence of bilayer membrane material and soluble binding protein. Application to the uptake of oleate into isolated cells.
    Heirwegh KP; Meuwissen JA
    Biochem J; 1992 Jun; 284 ( Pt 2)(Pt 2):353-61. PubMed ID: 1599418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein fluctuation and enzyme activity.
    Damjanovich S; Somogyi B; Welch GR
    J Theor Biol; 1983 Nov; 105(1):25-33. PubMed ID: 6656275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel thermodynamic relationship based on Kramers Theory for studying enzyme kinetics under high viscosity.
    Siddiqui KS; Bokhari SA; Afzal AJ; Singh S
    IUBMB Life; 2004 Jul; 56(7):403-7. PubMed ID: 15545217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The determination of thermodynamic allosteric parameters of an enzyme undergoing steady-state turnover.
    Reinhart GD
    Arch Biochem Biophys; 1983 Jul; 224(1):389-401. PubMed ID: 6870263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The exponential model for a regulatory enzyme. An interpretation of the linear free-energy relationship.
    Ainsworth S
    Biochem J; 1986 Dec; 240(3):811-5. PubMed ID: 3827868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Model for magnetic field effects on radical pair recombination in enzyme kinetics.
    Eichwald C; Walleczek J
    Biophys J; 1996 Aug; 71(2):623-31. PubMed ID: 8842202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The dynamic basis of energy transduction in enzymes.
    Somogyi B; Welch GR; Damjanovich S
    Biochim Biophys Acta; 1984 Sep; 768(2):81-112. PubMed ID: 6089882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Specific ligand induced dimerization of allosteric enzymes].
    Kurganov BI
    Mol Biol (Mosk); 1982; 16(2):424-33. PubMed ID: 7073865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A theoretical model for calculation of the rate constant of enzyme-substrate complex formation. II. Effect of intermolecular forces on the parameters describing the translational diffusion motion of a particle.
    Somogyi B
    Acta Biochim Biophys Acad Sci Hung; 1974; 9(3):175-84. PubMed ID: 4419763
    [No Abstract]   [Full Text] [Related]  

  • 14. A diffusion Michaelis-Menten mechanism: continuous conformational change in enzymatic kinetics.
    Agmon N
    J Theor Biol; 1985 Apr; 113(4):711-7. PubMed ID: 4033150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Internal friction in enzyme reactions.
    Rauscher A; Derényi I; Gráf L; Málnási-Csizmadia A
    IUBMB Life; 2013 Jan; 65(1):35-42. PubMed ID: 23281036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the mechanism of proton coupled electron transfer to dioxygen: the oxidative half-reaction of bovine serum amine oxidase.
    Su Q; Klinman JP
    Biochemistry; 1998 Sep; 37(36):12513-25. PubMed ID: 9730824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic behaviors of enzymes attached to nanoparticles: the effect of particle mobility.
    Jia H; Zhu G; Wang P
    Biotechnol Bioeng; 2003 Nov; 84(4):406-14. PubMed ID: 14574697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The interaction of an ionizing ligand with enzymes having a single ionizing group. Implications for the reaction of folate analogues with dihydrofolate reductase.
    Stone SR; Morrison JF
    Biochim Biophys Acta; 1983 Jun; 745(3):237-46. PubMed ID: 6860674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution-free computer methods for analysing ligand binding and enzyme mechanisms.
    Crabbe MJ
    Comput Biol Med; 1985; 15(3):111-21. PubMed ID: 3839175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational dependence of hemoglobin reactivity under high viscosity conditions: the role of solvent slaved dynamics.
    Samuni U; Roche CJ; Dantsker D; Friedman JM
    J Am Chem Soc; 2007 Oct; 129(42):12756-64. PubMed ID: 17910446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.