These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 6865495)
1. Age-dependent variations in the distribution of rat lens water-soluble crystallins. Size fractionation and molecular weight determination. Bindels JG; Bours J; Hoenders HJ Mech Ageing Dev; 1983 Jan; 21(1):1-13. PubMed ID: 6865495 [TBL] [Abstract][Full Text] [Related]
2. Isoelectric focusing of crystallins in microsections of calf and adult bovine lens. Identification of water-insoluble crystallins complexing under nondenaturing conditions: demonstration of chaperone activity of alpha-crystallin. Babizhayev MA; Bours J; Utikal KJ Ophthalmic Res; 1996; 28(6):365-74. PubMed ID: 9032796 [TBL] [Abstract][Full Text] [Related]
3. Patterns of crystallin distribution in porcine eye lenses. Keenan J; Orr DF; Pierscionek BK Mol Vis; 2008 Jul; 14():1245-53. PubMed ID: 18615203 [TBL] [Abstract][Full Text] [Related]
4. Biochemistry of the ageing rat lens. II. Isoelectric focusing of water-soluble crystallins. Bours J; Hockwin O Ophthalmic Res; 1983; 15(5):234-9. PubMed ID: 6646626 [TBL] [Abstract][Full Text] [Related]
5. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses. Harrington V; Srivastava OP; Kirk M Mol Vis; 2007 Sep; 13():1680-94. PubMed ID: 17893670 [TBL] [Abstract][Full Text] [Related]
6. Multi-crystallin complexes exist in the water-soluble high molecular weight protein fractions of aging normal and cataractous human lenses. Srivastava K; Chaves JM; Srivastava OP; Kirk M Exp Eye Res; 2008 Oct; 87(4):356-66. PubMed ID: 18662688 [TBL] [Abstract][Full Text] [Related]
8. Age-related changes in the water-soluble lens protein composition of Wistar and accelerated-senescence OXYS rats. Kopylova LV; Cherepanov IV; Snytnikova OA; Rumyantseva YV; Kolosova NG; Tsentalovich YP; Sagdeev RZ Mol Vis; 2011; 17():1457-67. PubMed ID: 21677790 [TBL] [Abstract][Full Text] [Related]
9. Lens growth and protein changes in the eastern grey kangaroo. Augusteyn RC Mol Vis; 2011; 17():3234-42. PubMed ID: 22194649 [TBL] [Abstract][Full Text] [Related]
10. On the composition and origin of the urea-soluble polypeptides of the U18666A cataract. Cenedella RJ; Augusteyn RC Curr Eye Res; 1990 Sep; 9(9):805-18. PubMed ID: 2245643 [TBL] [Abstract][Full Text] [Related]
11. Variation in proportion and molecular weight of native crystallins from single human lenses upon aging and formation of nuclear cataract. Bessems GJ; Hoenders HJ; Wollensak J Exp Eye Res; 1983 Dec; 37(6):627-37. PubMed ID: 6662209 [TBL] [Abstract][Full Text] [Related]
12. αA-crystallin peptide SDRDKFVIFLDVKHF accumulating in aging lens impairs the function of α-crystallin and induces lens protein aggregation. Santhoshkumar P; Raju M; Sharma KK PLoS One; 2011 Apr; 6(4):e19291. PubMed ID: 21552534 [TBL] [Abstract][Full Text] [Related]
13. Comparative proteomics analysis of degenerative eye lenses of nocturnal rice eel and catfish as compared to diurnal zebrafish. Lin YR; Mok HK; Wu YH; Liang SS; Hsiao CC; Huang CH; Chiou SH Mol Vis; 2013; 19():623-37. PubMed ID: 23559856 [TBL] [Abstract][Full Text] [Related]
14. Rat lens gamma-crystallins. Characterization of the six gene products and their spatial and temporal distribution resulting from differential synthesis. Siezen RJ; Wu E; Kaplan ED; Thomson JA; Benedek GB J Mol Biol; 1988 Feb; 199(3):475-90. PubMed ID: 3351938 [TBL] [Abstract][Full Text] [Related]
15. Differential glycation of rat alpha-, beta- and gamma-crystallins. Swamy MS; Abraham EC Exp Eye Res; 1991 Apr; 52(4):439-44. PubMed ID: 2037022 [TBL] [Abstract][Full Text] [Related]
16. Crystallins in water soluble-high molecular weight protein fractions and water insoluble protein fractions in aging and cataractous human lenses. Harrington V; McCall S; Huynh S; Srivastava K; Srivastava OP Mol Vis; 2004 Jul; 10():476-89. PubMed ID: 15303090 [TBL] [Abstract][Full Text] [Related]
17. Age-related changes in normal and cataractous human lens crystallins, separated by fast-performance liquid chromatography. Pereira PC; Ramalho JS; Faro CJ; Mota MC Ophthalmic Res; 1994; 26(3):149-57. PubMed ID: 8090432 [TBL] [Abstract][Full Text] [Related]
18. Age-related variations in the distribution of crystallins within the bovine lens. Bessems GJ; De Man BM; Bours J; Hoenders HJ Exp Eye Res; 1986 Dec; 43(6):1019-30. PubMed ID: 3817022 [TBL] [Abstract][Full Text] [Related]
19. Calpain II induced insolubilization of lens beta-crystallin polypeptides may induce cataract. David LL; Wright JW; Shearer TR Biochim Biophys Acta; 1992 Jul; 1139(3):210-6. PubMed ID: 1627659 [TBL] [Abstract][Full Text] [Related]
20. The effects of hyperbaric oxygen on the crystallins of cultured rabbit lenses: a possible catalytic role for copper. Padgaonkar VA; Leverenz VR; Fowler KE; Reddy VN; Giblin FJ Exp Eye Res; 2000 Oct; 71(4):371-83. PubMed ID: 10995558 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]