These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
298 related articles for article (PubMed ID: 6865925)
1. Pharmacological characterization of the acetylcholine transport system in purified Torpedo electric organ synaptic vesicles. Anderson DC; King SC; Parsons SM Mol Pharmacol; 1983 Jul; 24(1):48-54. PubMed ID: 6865925 [TBL] [Abstract][Full Text] [Related]
2. Inhibition of [3H]acetylcholine active transport by tetraphenylborate and other anions. Anderson DC; King SC; Parsons SM Mol Pharmacol; 1983 Jul; 24(1):55-9. PubMed ID: 6865926 [TBL] [Abstract][Full Text] [Related]
3. Fractional vesamicol receptor occupancy and acetylcholine active transport inhibition in synaptic vesicles. Kaufman R; Rogers GA; Fehlmann C; Parsons SM Mol Pharmacol; 1989 Sep; 36(3):452-8. PubMed ID: 2550778 [TBL] [Abstract][Full Text] [Related]
4. Stoichiometries of acetylcholine uptake, release, and drug inhibition in Torpedo synaptic vesicles: heterogeneity in acetylcholine transport and storage. Anderson DC; Bahr BA; Parsons SM J Neurochem; 1986 Apr; 46(4):1207-13. PubMed ID: 3950624 [TBL] [Abstract][Full Text] [Related]
5. Acetylcholine transport and drug inhibition kinetics in Torpedo synaptic vesicles. Bahr BA; Parsons SM J Neurochem; 1986 Apr; 46(4):1214-8. PubMed ID: 3950625 [TBL] [Abstract][Full Text] [Related]
6. Demonstration of a receptor in Torpedo synaptic vesicles for the acetylcholine storage blocker L-trans-2-(4-phenyl[3,4-3H]-piperidino) cyclohexanol. Bahr BA; Parsons SM Proc Natl Acad Sci U S A; 1986 Apr; 83(7):2267-70. PubMed ID: 3457385 [TBL] [Abstract][Full Text] [Related]
7. Biochemical evidence that acetylcholine release from cholinergic nerve terminals is mostly vesicular. Michaelson DM; Burstein M FEBS Lett; 1985 Sep; 188(2):389-93. PubMed ID: 4029394 [TBL] [Abstract][Full Text] [Related]
8. Translocation of cytosolic acetylcholine into synaptic vesicles and demonstration of vesicular release. Michaelson DM; Burstein M; Licht R J Biol Chem; 1986 May; 261(15):6831-5. PubMed ID: 3700417 [TBL] [Abstract][Full Text] [Related]
9. AH5183 and cetiedil: two potent inhibitors of acetylcholine uptake into isolated synaptic vesicles from Torpedo marmorata. Diebler MF; Gaudry-Talarmain YM J Neurochem; 1989 Mar; 52(3):813-21. PubMed ID: 2521893 [TBL] [Abstract][Full Text] [Related]
10. The effect of the acetylcholine transport blocker 2-(4-phenylpiperidino) cyclohexanol (AH5183) on the subcellular storage and release of acetylcholine in mouse brain. Carroll PT Brain Res; 1985 Dec; 358(1-2):200-9. PubMed ID: 4075114 [TBL] [Abstract][Full Text] [Related]
11. Cholinergic synaptic vesicle heterogeneity: evidence for regulation of acetylcholine transport. Gracz LM; Wang WC; Parsons SM Biochemistry; 1988 Jul; 27(14):5268-74. PubMed ID: 3167045 [TBL] [Abstract][Full Text] [Related]
12. Compared effects of two vesicular acetylcholine uptake blockers, AH5183 and cetiedil, on cholinergic functions in Torpedo synaptosomes: acetylcholine synthesis, choline transport, vesicular uptake, and evoked acetylcholine release. Gaudry-Talarmain YM; Diebler MF; O'Regan S J Neurochem; 1989 Mar; 52(3):822-9. PubMed ID: 2493069 [TBL] [Abstract][Full Text] [Related]
13. Acetylcholine transport: fundamental properties and effects of pharmacologic agents. Parsons SM; Bahr BA; Gracz LM; Kaufman R; Kornreich WD; Nilsson L; Rogers GA Ann N Y Acad Sci; 1987; 493():220-33. PubMed ID: 3035983 [No Abstract] [Full Text] [Related]
14. Regulation of the vesamicol receptor in cholinergic synaptic vesicles by acetylcholine and an endogenous factor. Noremberg K; Parsons SM J Neurochem; 1989 Mar; 52(3):913-20. PubMed ID: 2537382 [TBL] [Abstract][Full Text] [Related]
15. Quinacrine and 2-(4-phenylpiperidino)cyclohexanol (AH5183) inhibit acetylcholine release and synthesis in rat brain slices. Jope RS; Johnson GV Mol Pharmacol; 1986 Jan; 29(1):45-51. PubMed ID: 3945227 [TBL] [Abstract][Full Text] [Related]
16. Proton gradient linkage to active uptake of [3H]acetylcholine by Torpedo electric organ synaptic vesicles. Anderson DC; King SC; Parsons SM Biochemistry; 1982 Jun; 21(13):3037-43. PubMed ID: 6213263 [TBL] [Abstract][Full Text] [Related]
17. Inhibition of acetylcholine storage by acetylcholine analogs in vitro. Rogers GA; Parsons SM Mol Pharmacol; 1989 Aug; 36(2):333-41. PubMed ID: 2770706 [TBL] [Abstract][Full Text] [Related]
18. Synthesis, in vitro acetylcholine-storage-blocking activities, and biological properties of derivatives and analogues of trans-2-(4-phenylpiperidino)cyclohexanol (vesamicol). Rogers GA; Parsons SM; Anderson DC; Nilsson LM; Bahr BA; Kornreich WD; Kaufman R; Jacobs RS; Kirtman B J Med Chem; 1989 Jun; 32(6):1217-30. PubMed ID: 2724295 [TBL] [Abstract][Full Text] [Related]
19. Uncoupling of acetylcholine uptake from the Torpedo cholinergic synaptic vesicle ATPase. Anderson DC; King SC; Parsons SM Biochem Biophys Res Commun; 1981 Nov; 103(2):422-8. PubMed ID: 6277307 [No Abstract] [Full Text] [Related]
20. Kinetic parameters for the vesicular acetylcholine transporter: two protons are exchanged for one acetylcholine. Nguyen ML; Cox GD; Parsons SM Biochemistry; 1998 Sep; 37(38):13400-10. PubMed ID: 9748347 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]