These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 6865926)

  • 1. Inhibition of [3H]acetylcholine active transport by tetraphenylborate and other anions.
    Anderson DC; King SC; Parsons SM
    Mol Pharmacol; 1983 Jul; 24(1):55-9. PubMed ID: 6865926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pharmacological characterization of the acetylcholine transport system in purified Torpedo electric organ synaptic vesicles.
    Anderson DC; King SC; Parsons SM
    Mol Pharmacol; 1983 Jul; 24(1):48-54. PubMed ID: 6865925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proton gradient linkage to active uptake of [3H]acetylcholine by Torpedo electric organ synaptic vesicles.
    Anderson DC; King SC; Parsons SM
    Biochemistry; 1982 Jun; 21(13):3037-43. PubMed ID: 6213263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fractional vesamicol receptor occupancy and acetylcholine active transport inhibition in synaptic vesicles.
    Kaufman R; Rogers GA; Fehlmann C; Parsons SM
    Mol Pharmacol; 1989 Sep; 36(3):452-8. PubMed ID: 2550778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative effects of aluminum and ouabain on synaptosomal choline uptake, acetylcholine release and (Na+/K+)ATPase.
    Silva VS; Nunes MA; Cordeiro JM; Calejo AI; Santos S; Neves P; Sykes A; Morgado F; Dunant Y; Gonçalves PP
    Toxicology; 2007 Jul; 236(3):158-77. PubMed ID: 17560001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stoichiometries of acetylcholine uptake, release, and drug inhibition in Torpedo synaptic vesicles: heterogeneity in acetylcholine transport and storage.
    Anderson DC; Bahr BA; Parsons SM
    J Neurochem; 1986 Apr; 46(4):1207-13. PubMed ID: 3950624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acetylcholine transport and drug inhibition kinetics in Torpedo synaptic vesicles.
    Bahr BA; Parsons SM
    J Neurochem; 1986 Apr; 46(4):1214-8. PubMed ID: 3950625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uncoupling of acetylcholine uptake from the Torpedo cholinergic synaptic vesicle ATPase.
    Anderson DC; King SC; Parsons SM
    Biochem Biophys Res Commun; 1981 Nov; 103(2):422-8. PubMed ID: 6277307
    [No Abstract]   [Full Text] [Related]  

  • 9. Effect of veratridine on miniature endplate current amplitudes at the rat neuromuscular junction and acetylcholine uptake by Torpedo synaptic vesicles.
    Pemberton KE; Nguyen ML; Prior C; Parsons SM; Marshall IG
    Brain Res; 1995 Feb; 671(2):267-74. PubMed ID: 7743214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic parameters for the vesicular acetylcholine transporter: two protons are exchanged for one acetylcholine.
    Nguyen ML; Cox GD; Parsons SM
    Biochemistry; 1998 Sep; 37(38):13400-10. PubMed ID: 9748347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specific stimulated uptake of acetylcholine by Torpedo electric organ synaptic vesicles.
    Parsons SM; Koenigsberger R
    Proc Natl Acad Sci U S A; 1980 Oct; 77(10):6234-8. PubMed ID: 6934549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of vesicle recycling in vesicular storage and release of acetylcholine in Torpedo electroplaque synapses.
    Suszkiw JB; Whittaker VP
    Prog Brain Res; 1979; 49():153-62. PubMed ID: 515430
    [No Abstract]   [Full Text] [Related]  

  • 13. Translocation of cytosolic acetylcholine into synaptic vesicles and demonstration of vesicular release.
    Michaelson DM; Burstein M; Licht R
    J Biol Chem; 1986 May; 261(15):6831-5. PubMed ID: 3700417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ATP-dependent calcium uptake by cholinergic synaptic vesicles isolated from Torpedo electric organ.
    Israël M; Manaranche R; Marsal J; Meunier FM; Morel N; Frachon P; Lesbats B
    J Membr Biol; 1980 May; 54(2):115-26. PubMed ID: 7401165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uncoupling of cholinergic synaptic vesicles by the presynaptic toxin beta-bungarotoxin.
    Anderson DC; Parsons SM
    J Neurochem; 1986 Oct; 47(4):1305-11. PubMed ID: 2943872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cholinergic synaptic vesicles isolated from Torpedo marmorata: demonstration of acetylcholine and choline uptake in an in vitro system.
    Giompres P; Luqmani YA
    Neuroscience; 1980; 5(6):1041-52. PubMed ID: 6157128
    [No Abstract]   [Full Text] [Related]  

  • 17. AH5183 and cetiedil: two potent inhibitors of acetylcholine uptake into isolated synaptic vesicles from Torpedo marmorata.
    Diebler MF; Gaudry-Talarmain YM
    J Neurochem; 1989 Mar; 52(3):813-21. PubMed ID: 2521893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A kinetic and allosteric model for the acetylcholine transporter-vesamicol receptor in synaptic vesicles.
    Bahr BA; Clarkson ED; Rogers GA; Noremberg K; Parsons SM
    Biochemistry; 1992 Jun; 31(25):5752-62. PubMed ID: 1319200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Demonstration of a receptor in Torpedo synaptic vesicles for the acetylcholine storage blocker L-trans-2-(4-phenyl[3,4-3H]-piperidino) cyclohexanol.
    Bahr BA; Parsons SM
    Proc Natl Acad Sci U S A; 1986 Apr; 83(7):2267-70. PubMed ID: 3457385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acetylcholine transport: fundamental properties and effects of pharmacologic agents.
    Parsons SM; Bahr BA; Gracz LM; Kaufman R; Kornreich WD; Nilsson L; Rogers GA
    Ann N Y Acad Sci; 1987; 493():220-33. PubMed ID: 3035983
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.