BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 6868948)

  • 1. [Development of the marginal nuclei in the chick spinal cord].
    Uehara M; Ueshima T
    Kaibogaku Zasshi; 1983 Feb; 58(1):14-22. PubMed ID: 6868948
    [No Abstract]   [Full Text] [Related]  

  • 2. Histochemical evidence of glycogen content in the dorsal ependymal lining of the spinal cord of chick embryo.
    Bosch R; Buschiazzo HO; De Buschiazzo PM; Rodríguez RR
    Acta Physiol Lat Am; 1968; 18(2):110-3. PubMed ID: 5703657
    [No Abstract]   [Full Text] [Related]  

  • 3. A histochemical study of glycogen in differentiating central nervous system of chick.
    Medda JN; Das AK
    Acta Histochem; 1972; 43(1):115-8. PubMed ID: 4631204
    [No Abstract]   [Full Text] [Related]  

  • 4. [Behavior characteristics of nerve and muscle cells in mixed cultures of chick embryo skeletal muscle and spinal cord].
    Museridze DP; Svanidze IK
    Tsitologiia; 1982 May; 24(5):610-2. PubMed ID: 7101460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution of glycogen in the floor plate of the chick spinal cord during development.
    Uehara M; Ueshima T
    Anat Rec; 1984 May; 209(1):105-13. PubMed ID: 6731867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Origin of the avian glycogen body. II. Observations in support of a glial nature in the chick embryo.
    De Gennaro LD
    Growth Dev Aging; 1993; 57(4):275-81. PubMed ID: 8300280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The cell coat in the neuropil of the chick spinal cord during development.
    Alfei L; Caravita S; Fiorentini P
    Microsc Acta; 1974 Nov; 76(3):216-23. PubMed ID: 4141476
    [No Abstract]   [Full Text] [Related]  

  • 8. The development of interneurons in the chick embryo spinal cord following in vivo treatment with retinoic acid.
    Shiga T; Gaur VP; Yamaguchi K; Oppenheim RW
    J Comp Neurol; 1995 Sep; 360(3):463-74. PubMed ID: 8543652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibitory effects of ventral signals on the development of Brn-3.0-expressing neurons in the dorsal spinal cord.
    Fedtsova N; Turner EE
    Dev Biol; 1997 Oct; 190(1):18-31. PubMed ID: 9331328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Histogenesis of the chick spinal cord].
    Kanemitsu A
    Shinkei Kenkyu No Shimpo; 1972 Jun; 16(3):379-87. PubMed ID: 5066183
    [No Abstract]   [Full Text] [Related]  

  • 11. Identification of early neurons in the brainstem and spinal cord. II. An autoradiographic study in the mouse.
    McConnell JA
    J Comp Neurol; 1981 Aug; 200(2):273-88. PubMed ID: 7287922
    [No Abstract]   [Full Text] [Related]  

  • 12. Neuronotrophic effects of skeletal muscle fractions on spinal cord differentiation.
    Hsu L; Natyzak D; Trupin GL
    J Embryol Exp Morphol; 1982 Oct; 71():83-95. PubMed ID: 7153699
    [No Abstract]   [Full Text] [Related]  

  • 13. [Electron microscopic contribution on nerve cell differentiation and histogenesis of the gray substance of the spinal cord of chick embryos].
    Wechsler W
    Z Zellforsch Mikrosk Anat; 1966; 74(3):401-22. PubMed ID: 5986587
    [No Abstract]   [Full Text] [Related]  

  • 14. Synapsin I expression in spinal cord neurons during chick embryo development.
    Plateroti M; Vignoli AL; Biagioni S; Di Stasi AM; Petrucci TC; Augusti-Tocco G
    J Neurosci Res; 1994 Dec; 39(5):535-44. PubMed ID: 7891389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of specific populations of interneurons in the ventral horn of the embryonic chick lumbosacral spinal cord.
    Antal M; Polgár E; Berki A; Birinyi A; Puskár Z
    Eur J Morphol; 1994 Aug; 32(2-4):201-6. PubMed ID: 7803167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developmental changes in the distribution of gamma-aminobutyric acid-immunoreactive neurons in the embryonic chick lumbosacral spinal cord.
    Antal M; Berki AC; Horváth L; O'Donovan MJ
    J Comp Neurol; 1994 May; 343(2):228-36. PubMed ID: 8027440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. L1, beta1 integrin, and cadherins mediate axonal regeneration in the embryonic spinal cord.
    Blackmore M; Letourneau PC
    J Neurobiol; 2006 Dec; 66(14):1564-83. PubMed ID: 17058193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Some aspects of the normal nerve cell size].
    Kobayashi Y
    No To Shinkei; 1988 Jan; 40(1):7-21. PubMed ID: 3282530
    [No Abstract]   [Full Text] [Related]  

  • 19. An experimental analysis of the determination of cell patterns in the spinal cord of the chick embryo.
    Narayanan CH
    J Comp Neurol; 1970 Jun; 139(2):189-98. PubMed ID: 5422530
    [No Abstract]   [Full Text] [Related]  

  • 20. Raphe-spinal neurons display an age-dependent differential capacity for neurite outgrowth compared to other brainstem-spinal populations.
    Borisoff JF; Pataky DM; McBride CB; Steeves JD
    Exp Neurol; 2000 Nov; 166(1):16-28. PubMed ID: 11031080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.