BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 6869527)

  • 1. Fatty acid and glucose utilization in isolated, working fetal pig hearts.
    Werner JC; Whitman V; Fripp RR; Schuler HG; Musselman J; Sham RL
    Am J Physiol; 1983 Jul; 245(1):E19-23. PubMed ID: 6869527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fatty acid and glucose utilization in isolated, working newborn pig hearts.
    Werner JC; Whitman V; Vary TC; Fripp RR; Musselman J; Schuler HG
    Am J Physiol; 1983 Jan; 244(1):E19-23. PubMed ID: 6849379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Palmitate oxidation by isolated working fetal and newborn pig hearts.
    Werner JC; Sicard RE; Schuler HG
    Am J Physiol; 1989 Feb; 256(2 Pt 1):E315-21. PubMed ID: 2919670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carnitine stimulation of glucose oxidation in the fatty acid perfused isolated working rat heart.
    Broderick TL; Quinney HA; Lopaschuk GD
    J Biol Chem; 1992 Feb; 267(6):3758-63. PubMed ID: 1740427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucose oxidation rates in fatty acid-perfused isolated working hearts from diabetic rats.
    Wall SR; Lopaschuk GD
    Biochim Biophys Acta; 1989 Nov; 1006(1):97-103. PubMed ID: 2804076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fatty acid metabolism in hearts containing elevated levels of CoA.
    Lopaschuk GD; Hansen CA; Neely JR
    Am J Physiol; 1986 Mar; 250(3 Pt 2):H351-9. PubMed ID: 3953832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of mechanical activity and hormones on myocardial glucose and fatty acid utilization.
    Neely JR; Whitmer M; Mochizuki S
    Circ Res; 1976 May; 38(5 Suppl 1):I22-30. PubMed ID: 131653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glucose and fatty acid metabolism in the isolated working mouse heart.
    Belke DD; Larsen TS; Lopaschuk GD; Severson DL
    Am J Physiol; 1999 Oct; 277(4):R1210-7. PubMed ID: 10516264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carnitine transport and exogenous palmitate oxidation in chronically volume-overloaded rat hearts.
    el Alaoui-Talibi Z; Moravec J
    Biochim Biophys Acta; 1989 Jun; 1003(2):109-14. PubMed ID: 2499353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Myocardial performance and metabolism in non-ketotic, diabetic rat hearts: myocardial function and metabolism in vivo and in the isolated perfused heart under the influence of insulin and octanoate.
    Rösen P; Windeck P; Zimmer HG; Frenzel H; Bürrig KF; Reinauer H
    Basic Res Cardiol; 1986; 81(6):620-35. PubMed ID: 3545178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pyruvate reverses fatty-acid-induced depression of ventricular function and calcium overload after hypothermia in guinea pig hearts.
    Aasum E; Larsen TS
    Cardiovasc Res; 1997 Feb; 33(2):370-7. PubMed ID: 9074701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validation of 18F-fluoro-4-thia-palmitate as a PET probe for myocardial fatty acid oxidation: effects of hypoxia and composition of exogenous fatty acids.
    DeGrado TR; Kitapci MT; Wang S; Ying J; Lopaschuk GD
    J Nucl Med; 2006 Jan; 47(1):173-81. PubMed ID: 16391202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Postischemic recovery of heart metabolism and function: role of mitochondrial fatty acid transfer.
    Montessuit C; Papageorgiou I; Tardy-Cantalupi I; Rosenblatt-Velin N; Lerch R
    J Appl Physiol (1985); 2000 Jul; 89(1):111-9. PubMed ID: 10904042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy substrate utilization by isolated working hearts from newborn rabbits.
    Lopaschuk GD; Spafford MA
    Am J Physiol; 1990 May; 258(5 Pt 2):H1274-80. PubMed ID: 2337162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The contribution of glycolysis, glucose oxidation, lactate oxidation, and fatty acid oxidation to ATP production in isolated biventricular working hearts from 2-week-old rabbits.
    Itoi T; Lopaschuk GD
    Pediatr Res; 1993 Dec; 34(6):735-41. PubMed ID: 8108185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of carbohydrate and fatty acid utilization by L-carnitine during cardiac development and hypoxia.
    Abdel-aleem S; St Louis J; Hendrickson SC; El-Shewy HM; El-Dawy K; Taylor DA; Lowe JE
    Mol Cell Biochem; 1998 Mar; 180(1-2):95-103. PubMed ID: 9546635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adenosine modification of energy substrate use in isolated hearts perfused with fatty acids.
    Finegan BA; Clanachan AS; Coulson CS; Lopaschuk GD
    Am J Physiol; 1992 May; 262(5 Pt 2):H1501-7. PubMed ID: 1590454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fatty acid chain-elongation in perfused rat heart: synthesis of stearoylcarnitine from perfused palmitate.
    Kerner J; Minkler PE; Lesnefsky EJ; Hoppel CL
    FEBS Lett; 2007 Sep; 581(23):4491-4. PubMed ID: 17761175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fatty acid oxidation and cardiac function in the sodium pivalate model of secondary carnitine deficiency.
    Broderick TL; Christos SC; Wolf BA; DiDomenico D; Shug AL; Paulson DJ
    Metabolism; 1995 Apr; 44(4):499-505. PubMed ID: 7723673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison between ranolazine and CVT-4325, a novel inhibitor of fatty acid oxidation, on cardiac metabolism and left ventricular function in rat isolated perfused heart during ischemia and reperfusion.
    Wang P; Fraser H; Lloyd SG; McVeigh JJ; Belardinelli L; Chatham JC
    J Pharmacol Exp Ther; 2007 Apr; 321(1):213-20. PubMed ID: 17202401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.