These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Development of an implantable oxygenator with cross-flow pump. Asakawa Y; Funakubo A; Fukunaga K; Taga I; Higami T; Kawamura T; Fukui Y ASAIO J; 2006; 52(3):291-5. PubMed ID: 16760718 [TBL] [Abstract][Full Text] [Related]
9. Development and clinical application of a new membrane oxygenator using a microporous polysulfone membrane. Dohi T; Hamada E; Murakami T; Nawa S; Komoto Y; Teramoto S; Kanbayashi T Trans Am Soc Artif Intern Organs; 1982; 28():338-41. PubMed ID: 7164260 [TBL] [Abstract][Full Text] [Related]
10. Oxygen and CO2 transfer of a polypropylene dimpled membrane lung with variable secondary flows. Dorrington KL; Ralph ME; Bellhouse BJ; Gardaz JP; Sykes MK J Biomed Eng; 1985 Apr; 7(2):89-99. PubMed ID: 3999727 [TBL] [Abstract][Full Text] [Related]
11. The pumping oxygenator: design criteria and first in vitro results. Fiore GB; Costantino ML; Fumero R; Montevecchi FM Artif Organs; 2000 Oct; 24(10):797-807. PubMed ID: 11091169 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of neonatal membrane oxygenators with respect to gaseous microemboli capture and transmembrane pressure gradients. Qiu F; Guan Y; Su X; Kunselman A; Undar A Artif Organs; 2010 Nov; 34(11):923-9. PubMed ID: 21092035 [TBL] [Abstract][Full Text] [Related]
14. Effects of blood flow pulse frequency on mass transfer efficiency of a commercial hollow fibre oxygenator. Fiore GB; Pennati G; Inzoli F; Mastrantonio F; Galavotti D Int J Artif Organs; 1998 Sep; 21(9):535-41. PubMed ID: 9828059 [TBL] [Abstract][Full Text] [Related]
15. Bubble continuous positive airway pressure enhances lung volume and gas exchange in preterm lambs. Pillow JJ; Hillman N; Moss TJ; Polglase G; Bold G; Beaumont C; Ikegami M; Jobe AH Am J Respir Crit Care Med; 2007 Jul; 176(1):63-9. PubMed ID: 17431223 [TBL] [Abstract][Full Text] [Related]
16. Extracorporeal life support systems: alternative vs. conventional circuits. Khan S; Vasavada R; Qiu F; Kunselman A; Undar A Perfusion; 2011 May; 26(3):191-8. PubMed ID: 21227982 [TBL] [Abstract][Full Text] [Related]
17. Experimental use of a compact centrifugal pump and membrane oxygenator as a cardiopulmonary support system. Suenaga E; Naito K; Cao ZL; Suda H; Ueno T; Natsuaki M; Itoh T Artif Organs; 2000 Nov; 24(11):912-5. PubMed ID: 11119082 [TBL] [Abstract][Full Text] [Related]
18. Development of an intravenous membrane oxygenator: a new concept in mechanical support for the failing lung. Hattler BG; Reeder GD; Sawzik PJ; Walters FR; Pham SM; Kormos RL; Keenan RJ; Griffith BP; Armitage JM; Hardesty RL J Heart Lung Transplant; 1994; 13(6):1003-8. PubMed ID: 7865505 [TBL] [Abstract][Full Text] [Related]
19. Use of a membrane oxygenator for open-heart surgery in infants. Murphy DA; Gillis DA; Lau H Can J Surg; 1976 Mar; 19(2):103-7. PubMed ID: 1260550 [TBL] [Abstract][Full Text] [Related]
20. Testing neonate-infant membrane oxygenators with the University of Texas neonatal pulsatile cardiopulmonary bypass system in vitro. Undar A; Holland MC; Howelton RV; Benson CK; Ybarra JR; Miller OL; Rossbach MM; Runge TM; Johnson SB; Sako EY; Calhoon JH Perfusion; 1998 Sep; 13(5):346-52. PubMed ID: 9778720 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]