These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 6871198)

  • 1. Electrogenic transport of 5-oxoproline in rabbit renal brush-border membrane vesicles. Effect of intravesicular potassium.
    Ganapathy V; Leibach FH
    Biochim Biophys Acta; 1983 Jul; 732(1):32-40. PubMed ID: 6871198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sodium-coupled electrogenic transport of pyroglutamate (5-oxoproline) via SLC5A8, a monocarboxylate transporter.
    Miyauchi S; Gopal E; Babu E; Srinivas SR; Kubo Y; Umapathy NS; Thakkar SV; Ganapathy V; Prasad PD
    Biochim Biophys Acta; 2010 Jun; 1798(6):1164-71. PubMed ID: 20211600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport of 5-oxoproline into rabbit renal brush border membrane vesicles.
    Ganapathy V; Roesel RA; Leibach FH
    Biochem Biophys Res Commun; 1982 Mar; 105(1):28-35. PubMed ID: 7092855
    [No Abstract]   [Full Text] [Related]  

  • 4. Sodium-dependent transport of inorganic sulfate by rabbit renal brush-border membrane vesicles. Effects of other ions.
    Schneider EG; Durham JC; Sacktor B
    J Biol Chem; 1984 Dec; 259(23):14591-9. PubMed ID: 6501309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biotin uptake mechanisms in brush-border and basolateral membrane vesicles isolated from rabbit kidney cortex.
    Podevin RA; Barbarat B
    Biochim Biophys Acta; 1986 Apr; 856(3):471-81. PubMed ID: 3964692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sodium gradient-dependent phosphate transport in renal brush border membrane vesicles. Effect of an intravesicular greater than extravesicular proton gradient.
    Sacktor B; Cheng L
    J Biol Chem; 1981 Aug; 256(15):8080-4. PubMed ID: 7263641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Na+-dependent transport of glycine in renal brush border membrane vesicles. Evidence for a single specific transport system.
    Hammerman MR; Sacktor B
    Biochim Biophys Acta; 1982 Apr; 686(2):189-96. PubMed ID: 7082661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Na+-independent L-arginine transport in rabbit renal brush border membrane vesicles.
    Hammerman MR
    Biochim Biophys Acta; 1982 Feb; 685(1):71-7. PubMed ID: 7059593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sodium gradient-dependent L-glutamate transport in renal brush border membrane vesicles. Effect of an intravesicular > extravesicular potassium gradient.
    Schneider EG; Sacktor B
    J Biol Chem; 1980 Aug; 255(16):7645-9. PubMed ID: 7400138
    [No Abstract]   [Full Text] [Related]  

  • 10. Transport of amino acids in renal brush border membrane vesicles. Uptake of the neutral amino acid L-alanine.
    Fass SJ; Hammerman MR; Sacktor B
    J Biol Chem; 1977 Jan; 252(2):583-90. PubMed ID: 833145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Na+ gradient-dependent glycine uptake in basolateral membrane vesicles from the dog kidney.
    Schwab SJ; Hammerman MR
    Am J Physiol; 1985 Sep; 249(3 Pt 2):F338-45. PubMed ID: 4037088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. D(-)3-hydroxybutyrate cotransport with Na in rat renal brush border membrane vesicles.
    Barac-Nieto M
    Pflugers Arch; 1987 Apr; 408(4):321-7. PubMed ID: 3588250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of pH gradient and membrane potential in dipeptide transport in intestinal and renal brush-border membrane vesicles from the rabbit. Studies with L-carnosine and glycyl-L-proline.
    Ganapathy V; Leibach FH
    J Biol Chem; 1983 Dec; 258(23):14189-92. PubMed ID: 6643475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The singular effect of an internal K+ gradient (K+i greater than K+o) on the Na+ gradient (Na+o greater than NA+i)-dependent transport of L-glutamate in renal brush border membrane vesicles.
    Sacktor B; Schneider EG
    Int J Biochem; 1980; 12(1-2):229-34. PubMed ID: 7399026
    [No Abstract]   [Full Text] [Related]  

  • 15. Active transport of taurine in rabbit jejunal brush-border membrane vesicles.
    Miyamoto Y; Tiruppathi C; Ganapathy V; Leibach FH
    Am J Physiol; 1989 Jul; 257(1 Pt 1):G65-72. PubMed ID: 2750911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of potassium and chloride ions on the Na+/acidic amino acid cotransport system in rat intestinal brush-border membrane vesicles.
    Corcelli A; Storelli C
    Biochim Biophys Acta; 1983 Jul; 732(1):24-31. PubMed ID: 6135444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for tripeptide/H+ co-transport in rabbit renal brush-border membrane vesicles.
    Tiruppathi C; Kulanthaivel P; Ganapathy V; Leibach FH
    Biochem J; 1990 May; 268(1):27-33. PubMed ID: 2160811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Riboflavin transport by rabbit renal brush border membrane vesicles.
    Yanagawa N; Jo OD; Said HM
    Biochim Biophys Acta; 1997 Dec; 1330(2):172-8. PubMed ID: 9408170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimulation of the efflux of L-glutamate from renal brush-border membrane vesicles by extravesicular potassium.
    Sacktor B; Lepor N; Schneider EG
    Biosci Rep; 1981 Sep; 1(9):709-13. PubMed ID: 6125220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenylalanine uptake in isolated renal brush border vesicles.
    Evers J; Murer H; Kinne R
    Biochim Biophys Acta; 1976 Apr; 426(4):598-615. PubMed ID: 1259984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.