These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 6871216)
1. Kinetic analysis of L-lactate transport in human erythrocytes via the monocarboxylate-specific carrier system. De Bruijne AW; Vreeburg H; Van Steveninck J Biochim Biophys Acta; 1983 Aug; 732(3):562-8. PubMed ID: 6871216 [TBL] [Abstract][Full Text] [Related]
2. Discrimination of three parallel pathways of lactate transport in the human erythrocyte membrane by inhibitors and kinetic properties. Deuticke B; Beyer E; Forst B Biochim Biophys Acta; 1982 Jan; 684(1):96-110. PubMed ID: 7055558 [TBL] [Abstract][Full Text] [Related]
3. Alternative-substrate inhibition of L-lactate transport via the monocarboxylate-specific carrier system in human erythrocytes. de Bruijne AW; Vreeburg H; van Steveninck J Biochim Biophys Acta; 1985 Feb; 812(3):841-4. PubMed ID: 3970911 [TBL] [Abstract][Full Text] [Related]
4. The mechanism of lactate transport in human erythrocytes. Dubinsky WP; Racker E J Membr Biol; 1978 Dec; 44(1):25-36. PubMed ID: 32398 [TBL] [Abstract][Full Text] [Related]
5. Monocarboxylate transport in erythrocytes. Deuticke B J Membr Biol; 1982; 70(2):89-103. PubMed ID: 6764785 [No Abstract] [Full Text] [Related]
6. A rabbit erythrocyte membrane protein associated with L-lactate transport. Jennings ML; Adams-Lackey M J Biol Chem; 1982 Nov; 257(21):12866-71. PubMed ID: 7130184 [TBL] [Abstract][Full Text] [Related]
7. Lactate influx into red blood cells of athletic and nonathletic species. Skelton MS; Kremer DE; Smith EW; Gladden LB Am J Physiol; 1995 May; 268(5 Pt 2):R1121-8. PubMed ID: 7771571 [TBL] [Abstract][Full Text] [Related]
8. Transport of lactate in Plasmodium falciparum-infected human erythrocytes. Kanaani J; Ginsburg H J Cell Physiol; 1991 Dec; 149(3):469-76. PubMed ID: 1660483 [TBL] [Abstract][Full Text] [Related]
9. Monocarboxylate transport in red blood cells: kinetics and chemical modification. Deuticke B Methods Enzymol; 1989; 173():300-29. PubMed ID: 2674614 [No Abstract] [Full Text] [Related]
10. Symmetry and pH dependency of the lactate/proton carrier in skeletal muscle studied with rat sarcolemmal giant vesicles. Juel C Biochim Biophys Acta; 1996 Aug; 1283(1):106-10. PubMed ID: 8765101 [TBL] [Abstract][Full Text] [Related]
11. Utilization of short-chain monocarboxylic acids by the yeast Torulaspora delbrueckii: specificity of the transport systems and their regulation. Casal M; Leão C Biochim Biophys Acta; 1995 Jun; 1267(2-3):122-30. PubMed ID: 7612664 [TBL] [Abstract][Full Text] [Related]
12. Red cell metabolism affects lactate and pyruvate partition across the plasma membrane. Ninfali P; Piatti E; Palma F; Accorsi A; Fornaini G Arch Int Physiol Biochim; 1983 Dec; 91(5):417-22. PubMed ID: 6204611 [TBL] [Abstract][Full Text] [Related]
13. Effects of inorganic and organic anions on the transport of phosphoenol-pyruvate across the erythrocyte membrane. Hamasaki N; Matsuyama H; Hirota-Chigita C; Nanri H Tokai J Exp Clin Med; 1982; 7 Suppl():113-9. PubMed ID: 7186217 [TBL] [Abstract][Full Text] [Related]
14. L-Leucine transport in human red blood cells: a detailed kinetic analysis. Rosenberg R J Membr Biol; 1981; 62(1-2):79-93. PubMed ID: 7277478 [TBL] [Abstract][Full Text] [Related]
15. Characterization of the enhanced transport of L- and D-lactate into human red blood cells infected with Plasmodium falciparum suggests the presence of a novel saturable lactate proton cotransporter. Cranmer SL; Conant AR; Gutteridge WE; Halestrap AP J Biol Chem; 1995 Jun; 270(25):15045-52. PubMed ID: 7797486 [TBL] [Abstract][Full Text] [Related]
16. A model for the action of the anion exchange protein of the red blood cell. Rothstein A; Knauf PA; Grinstein S; Shami Y Prog Clin Biol Res; 1979; 30():483-96. PubMed ID: 531039 [TBL] [Abstract][Full Text] [Related]
17. A kinetic analysis of L-tryptophan transport in human red blood cells. Rosenberg R Biochim Biophys Acta; 1981 Dec; 649(2):262-8. PubMed ID: 7317397 [TBL] [Abstract][Full Text] [Related]
18. The transport of chloroquine across human erythrocyte membranes is mediated by a simple symmetric carrier. Yayon A; Ginsburg H Biochim Biophys Acta; 1982 Apr; 686(2):197-203. PubMed ID: 7082662 [TBL] [Abstract][Full Text] [Related]
19. Glycine transport by human red blood cells and ghosts: evidence for glycine anion and proton cotransport by band 3. King PA; Gunn RB Am J Physiol; 1991 Nov; 261(5 Pt 1):C814-21. PubMed ID: 1659210 [TBL] [Abstract][Full Text] [Related]
20. Inhibition of L-lactate transport and band 3-mediated anion transport in erythrocytes by the novel stilbenedisulphonate N,N,N',N'-tetrabenzyl-4,4'-diaminostilbene-2,2'-disulpho nat e (TBenzDS). Poole RC; Cranmer SL; Holdup DW; Halestrap AP Biochim Biophys Acta; 1991 Nov; 1070(1):69-76. PubMed ID: 1751540 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]