BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 6871404)

  • 1. The chronic spinalized cat: a model for neuromuscular plasticity.
    Smith JL; Edgerton VR; Eldred E; Zernicke RF
    Birth Defects Orig Artic Ser; 1983; 19(4):357-73. PubMed ID: 6871404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential of adult mammalian lumbosacral spinal cord to execute and acquire improved locomotion in the absence of supraspinal input.
    Edgerton VR; Roy RR; Hodgson JA; Prober RJ; de Guzman CP; de Leon R
    J Neurotrauma; 1992 Mar; 9 Suppl 1():S119-28. PubMed ID: 1588602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Partial denervation of ankle extensors prior to spinalization in cats impacts the expression of locomotion and the phasic modulation of reflexes.
    Frigon A; Rossignol S
    Neuroscience; 2009 Feb; 158(4):1675-90. PubMed ID: 19056469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of cutaneous inputs from the hindpaw to the control of locomotion. II. Spinal cats.
    Bouyer LJ; Rossignol S
    J Neurophysiol; 2003 Dec; 90(6):3640-53. PubMed ID: 12944535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transplants enhance locomotion in neonatal kittens whose spinal cords are transected: a behavioral and anatomical study.
    Howland DR; Bregman BS; Tessler A; Goldberger ME
    Exp Neurol; 1995 Oct; 135(2):123-45. PubMed ID: 7589324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Asymmetric changes in cutaneous reflexes after a partial spinal lesion and retention following spinalization during locomotion in the cat.
    Frigon A; Barrière G; Leblond H; Rossignol S
    J Neurophysiol; 2009 Nov; 102(5):2667-80. PubMed ID: 19726726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neurotrophic factors promote and enhance locomotor recovery in untrained spinalized cats.
    Boyce VS; Tumolo M; Fischer I; Murray M; Lemay MA
    J Neurophysiol; 2007 Oct; 98(4):1988-96. PubMed ID: 17652412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasticity of reflexes from the foot during locomotion after denervating ankle extensors in intact cats.
    Frigon A; Rossignol S
    J Neurophysiol; 2007 Oct; 98(4):2122-32. PubMed ID: 17652411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Locomotion of the hindlimbs after neurectomy of ankle flexors in intact and spinal cats: model for the study of locomotor plasticity.
    Carrier L; Brustein E; Rossignol S
    J Neurophysiol; 1997 Apr; 77(4):1979-93. PubMed ID: 9114249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Locomotor and reflex adaptation after partial denervation of ankle extensors in chronic spinal cats.
    Frigon A; Rossignol S
    J Neurophysiol; 2008 Sep; 100(3):1513-22. PubMed ID: 18614755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recovery of hindlimb locomotion after incomplete spinal cord injury in the cat involves spontaneous compensatory changes within the spinal locomotor circuitry.
    Martinez M; Delivet-Mongrain H; Leblond H; Rossignol S
    J Neurophysiol; 2011 Oct; 106(4):1969-84. PubMed ID: 21775717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive changes of the locomotor pattern and cutaneous reflexes during locomotion studied in the same cats before and after spinalization.
    Frigon A; Rossignol S
    J Physiol; 2008 Jun; 586(12):2927-45. PubMed ID: 18420704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Can the mammalian lumbar spinal cord learn a motor task?
    Hodgson JA; Roy RR; de Leon R; Dobkin B; Edgerton VR
    Med Sci Sports Exerc; 1994 Dec; 26(12):1491-7. PubMed ID: 7869884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual spinal lesion paradigm in the cat: evolution of the kinematic locomotor pattern.
    Barrière G; Frigon A; Leblond H; Provencher J; Rossignol S
    J Neurophysiol; 2010 Aug; 104(2):1119-33. PubMed ID: 20573971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hindlimb locomotor and postural training modulates glycinergic inhibition in the spinal cord of the adult spinal cat.
    de Leon RD; Tamaki H; Hodgson JA; Roy RR; Edgerton VR
    J Neurophysiol; 1999 Jul; 82(1):359-69. PubMed ID: 10400964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of locomotor behavior in the spinal kitten.
    Howland DR; Bregman BS; Tessler A; Goldberger ME
    Exp Neurol; 1995 Oct; 135(2):108-22. PubMed ID: 7589323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The locomotion of the low spinal cat. I. Coordination within a hindlimb.
    Forssberg H; Grillner S; Halbertsma J
    Acta Physiol Scand; 1980 Mar; 108(3):269-81. PubMed ID: 7376922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of bilateral lesions of the dorsolateral funiculi and dorsal columns at the level of the low thoracic spinal cord on the control of locomotion in the adult cat. I. Treadmill walking.
    Jiang W; Drew T
    J Neurophysiol; 1996 Aug; 76(2):849-66. PubMed ID: 8871204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Mechanisms of stepping rhythm formation during epidural spinal cord stimulation in decerebrated and spinal cord transected cats].
    Bogacheva IN; Nikitin OA; Musienko PE; Savokhin AA; Gerasimenko IuP
    Biofizika; 2009; 54(3):529-36. PubMed ID: 19569517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of cutaneous inputs from the hindpaw to the control of locomotion. I. Intact cats.
    Bouyer LJ; Rossignol S
    J Neurophysiol; 2003 Dec; 90(6):3625-39. PubMed ID: 12944536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.