These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 6871667)

  • 1. One-trial associative learning by an isolated molluscan CNS: use of different chemoreceptors for training and testing.
    Culligan N; Gelperin A
    Brain Res; 1983 May; 266(2):319-27. PubMed ID: 6871667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid taste-aversion learning by an isolated molluscan central nervous system.
    Chang JJ; Gelperin A
    Proc Natl Acad Sci U S A; 1980 Oct; 77(10):6204-6. PubMed ID: 6934546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro expression of in vivo learning by an isolated molluscan CNS.
    Gelperin A; Culligan N
    Brain Res; 1984 Jun; 304(2):207-13. PubMed ID: 6744040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feeding motor program in Limax. I. Neuromuscular correlates and control by chemosensory input.
    Gelperin A; Chang JJ; Reingold SC
    J Neurobiol; 1978 Jul; 9(4):285-300. PubMed ID: 681926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The molluscan neuropeptide, SCPB, increases the responsiveness of the feeding motor program of Limax maximus.
    Prior DJ; Watson WH
    J Neurobiol; 1988 Jan; 19(1):87-105. PubMed ID: 3346657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dopamine elicits feeding motor program in Limax maximus.
    Wieland SJ; Gelperin A
    J Neurosci; 1983 Sep; 3(9):1735-45. PubMed ID: 6886743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning: neural analysis in the isolated brain of a previously trained mollusc, Pleurobranchaea californica.
    Kovac MP; Davis WJ; Matera EM; Morielli A; Croll RP
    Brain Res; 1985 Apr; 331(2):275-84. PubMed ID: 3986570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acetylcholine activates cerebral interneurons and feeding motor program in Limax maximus.
    King MS; Delaney K; Gelperin A
    J Neurobiol; 1987 Nov; 18(6):509-30. PubMed ID: 3694192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro associative conditioning of Hermissenda: cumulative depolarization of type B photoreceptors and short-term associative behavioral changes.
    Farley J; Alkon DL
    J Neurophysiol; 1987 Jun; 57(6):1639-68. PubMed ID: 3598626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural and molecular mechanisms of microcognition in Limax.
    Watanabe S; Kirino Y; Gelperin A
    Learn Mem; 2008 Sep; 15(9):633-42. PubMed ID: 18772250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuronal homologies and the control of branchial tuft movements in two species of Tritonia.
    Dorsett DA
    J Exp Biol; 1974 Dec; 61(3):639-54. PubMed ID: 4443750
    [No Abstract]   [Full Text] [Related]  

  • 12. Modulation of heart activity in the terrestrial slug Limax maximus by the feeding motor program, small cardioactive peptides and stimulation of buccal neuron B1.
    Welsford IG; Prior DJ
    J Exp Biol; 1991 Jan; 155():1-19. PubMed ID: 2016573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feeding motor programme in Limax. II. Modulation by sensory inputs in intact animals and isolated central nervous systems.
    Reingold SC; Gelperin A
    J Exp Biol; 1980 Apr; 85():1-19. PubMed ID: 7373207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excitatory and inhibitory processes.
    Tauc L
    UCLA Forum Med Sci; 1969; 11():37-70. PubMed ID: 4319853
    [No Abstract]   [Full Text] [Related]  

  • 15. Processing of mechano- and chemosensory information in the lip nerve and cerebral ganglia of the snail Helix pomatia L.
    Kemenes G
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1992; 42(6):1180-95. PubMed ID: 1338250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The procerebrum is necessary for odor-aversion learning in the terrestrial slug Limax valentianus.
    Kasai Y; Watanabe S; Kirino Y; Matsuo R
    Learn Mem; 2006; 13(4):482-8. PubMed ID: 16847307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular physiology of the neural circuit for calcineurin-dependent associative learning in Caenorhabditis elegans.
    Kuhara A; Mori I
    J Neurosci; 2006 Sep; 26(37):9355-64. PubMed ID: 16971519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of chemosensory, visual, and statocyst pathways in Hermissenda crassicornis.
    Alkon DL; Akaike T; Harrigan J
    J Gen Physiol; 1978 Feb; 71(2):177-94. PubMed ID: 641519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cholinergic suppression: a postsynaptic mechanism of long-term associative learning.
    Morielli AD; Matera EM; Kovac MP; Shrum RG; McCormack KJ; Davis WJ
    Proc Natl Acad Sci U S A; 1986 Jun; 83(12):4556-60. PubMed ID: 3459190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localization and synthesis of monoamines in regions of Limax CNS controlling feeding behavior.
    Wieland SJ; Jahn E; Gelperin A
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1987; 86(1):125-30. PubMed ID: 2881707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.