These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 6873181)

  • 1. The inhibition of Na-dependent Ca uptake by verapamil in synaptic plasma membrane vesicles.
    Erdreich A; Spanier R; Rahamimoff H
    Eur J Pharmacol; 1983 Jun; 90(2-3):193-202. PubMed ID: 6873181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The inhibition of Ca uptake in cardiac membrane vesicles by verapamil.
    Erdreich A; Rahamimoff H
    Biochem Pharmacol; 1984 Jul; 33(14):2315-23. PubMed ID: 6466353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The asymmetric effect of lanthanides on Na+-gradient-dependent Ca2+ transport in synaptic plasma membrane vesicles.
    Rahamimoff H; Spanier R
    Biochim Biophys Acta; 1984 Jun; 773(2):279-89. PubMed ID: 6234024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ca(2+) regulation of the carrier-mediated gamma-aminobutyric acid release from isolated synaptic plasma membrane vesicles.
    Cordeiro JM; Meireles SM; Vale MG; Oliveira CR; Gonçalves PP
    Neurosci Res; 2000 Dec; 38(4):385-95. PubMed ID: 11164565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. gamma-Aminobutyric acid release from synaptosomes as influenced by Ca2+ and Ca2+ channel blockers.
    Carvalho CM; Santos SV; Carvalho AP
    Eur J Pharmacol; 1986 Nov; 131(1):1-12. PubMed ID: 3816939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estradiol in vitro modulates Na+-dependent Ca2+ uptake by synaptic plasma membrane vesicles of rat brain regions.
    Nikezić G; Nedeljković N; Horvat A; Kanazir D; Martinović JV
    J Endocrinol Invest; 1997 Dec; 20(11):664-8. PubMed ID: 9492105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of the Na+-Ca2+ antiport by its ionic environment: the effect of lithium.
    Hermoni M; Barzilai A; Rahamimoff H
    Isr J Med Sci; 1987; 23(1-2):44-8. PubMed ID: 2437073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual role of K+ and Na+ on the transport of [3H]-gamma-aminobutyric acid by synaptic plasma membrane vesicles.
    Gonçalves PP; Carvalho AP
    Brain Res Mol Brain Res; 1995 Aug; 32(1):161-5. PubMed ID: 7494456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of cell calcium and contractility in mammalian arterial smooth muscle: the role of sodium-calcium exchange.
    Ashida T; Blaustein MP
    J Physiol; 1987 Nov; 392():617-35. PubMed ID: 2451733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the carrier-mediated [3H]GABA release from isolated synaptic plasma membrane vesicles.
    Gonçalves PP; Carvalho AP
    Neurochem Res; 1995 Feb; 20(2):177-86. PubMed ID: 7783842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Verapamil is a competitive inhibitor of gamma-aminobutyric acid and calcium uptakes by mouse brain subcellular particles.
    Liron Z; Roberts E; Wong E
    Life Sci; 1985 Jan; 36(4):321-7. PubMed ID: 3965851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium transport systems in nerve terminals. Studies on membrane vesicles.
    Rahamimoff H; Abramovitz E; Papazian D; Goldin SM; Spanier R
    J Physiol (Paris); 1980 Sep; 76(5):487-95. PubMed ID: 7452517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Na+-Ca2+ exchange and calcium permeability in canine basolateral membrane vesicles: the effects of dibutyryl cAMP and specific inhibitors.
    Scoble JE; Cragoe EJ; Hruska KA
    Biochim Biophys Acta; 1988 Oct; 944(2):233-41. PubMed ID: 2846057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modification of cardiac sarcolemmal Na+-Ca2+ exchange by diltiazem and verapamil.
    Takeo S; Elimban V; Dhalla NS
    Can J Cardiol; 1985 Mar; 1(2):131-8. PubMed ID: 2996725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Orientation of synaptic plasma membrane vesicles containing calcium pump and sodium-calcium exchange activities.
    Gill DL; Chueh SH; Noel MW; Ueda T
    Biochim Biophys Acta; 1986 Mar; 856(1):165-73. PubMed ID: 3006769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane potential manipulation in synaptic plasma membrane vesicles for studying neurotransmitter uptake and release.
    Gonçalves PP; Carvalho AP
    Brain Res Brain Res Protoc; 1997 Feb; 1(1):1-12. PubMed ID: 9385041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ca2+ sensitivity of synaptic vesicle dopamine, gamma-aminobutyric acid, and glutamate transport systems.
    Gonçalves PP; Meireles SM; Neves P; Vale MG
    Neurochem Res; 2001 Jan; 26(1):75-81. PubMed ID: 11358285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Na(+)-Ca2+ antiporter activity of rat hepatocytes. Effect of adrenalectomy on Ca2+ uptake and release from plasma membrane vesicles.
    Studer RK; Borle AB
    Biochim Biophys Acta; 1992 Feb; 1134(1):7-16. PubMed ID: 1543758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the specificity of verapamil as a calcium channel-blocker.
    Norris DK; Bradford HF
    Biochem Pharmacol; 1985 Jun; 34(11):1953-6. PubMed ID: 4004910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation, purification, and reconstitution of the Na+ gradient-dependent Ca2+ transporter (Na+-Ca2+ exchanger) from brain synaptic plasma membranes.
    Barzilai A; Spanier R; Rahamimoff H
    Proc Natl Acad Sci U S A; 1984 Oct; 81(20):6521-5. PubMed ID: 6593714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.