These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 6873181)

  • 41. Ca2+ influx mechanisms in caveolae vesicles of pulmonary smooth muscle plasma membrane under inhibition of alpha2beta1 isozyme of Na+/K+-ATPase by ouabain.
    Ghosh B; Kar P; Mandal A; Dey K; Chakraborti T; Chakraborti S
    Life Sci; 2009 Jan; 84(5-6):139-48. PubMed ID: 19059418
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Kinetic properties of Na+/Ca2+ exchange in basolateral plasma membranes of rat small intestine.
    Ghijsen WE; De Jong MD; Van Os CH
    Biochim Biophys Acta; 1983 Apr; 730(1):85-94. PubMed ID: 6403033
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Modulation of ATP-dependent calcium extrusion and Na+/Ca2+ exchange across rat cardiac sarcolemma by calcium antagonists.
    Van Amsterdam FT; Zaagsma J
    Eur J Pharmacol; 1986 Apr; 123(3):441-9. PubMed ID: 3720828
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of synaptic plasma membranes on release of acetylcholine from synaptic vesicles.
    Kuo CH; Ichida S; Hata F; Yoshida H
    Jpn J Pharmacol; 1978 Jun; 28(3):339-43. PubMed ID: 702938
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sodium-calcium ion exchange in cardiac membrane vesicles.
    Reeves JP; Sutko JL
    Proc Natl Acad Sci U S A; 1979 Feb; 76(2):590-4. PubMed ID: 284383
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A Na+-Ca2+ exchange process in isolated sarcolemmal membranes of mesenteric arteries from WKY and SHR rats.
    Matlib MA; Schwartz A; Yamori Y
    Am J Physiol; 1985 Jul; 249(1 Pt 1):C166-72. PubMed ID: 2990226
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mechanisms of low Na+-induced increase in intracellular calcium in KCl-depolarized rat cardiomyocytes.
    Rathi SS; Saini HK; Xu YJ; Dhalla NS
    Mol Cell Biochem; 2004 Aug; 263(1-2):151-62. PubMed ID: 15524176
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Rate of Na+/Ca2+ exchange across the plasma membrane of synaptosomes measured using the fluorescence of chlorotetracycline. Implications to calcium homeostasis in synaptic terminals.
    García-Martín E; Gutiérrez-Merino C
    Biochim Biophys Acta; 1996 Apr; 1280(2):257-64. PubMed ID: 8639702
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Active Na+-dependent transport of Ca 2+ into the fraction of smooth muscle sarcolemma vesicles].
    Burchinskaia NF; Shlykov SG; Kosterin SA
    Biokhimiia; 1990 Mar; 55(3):541-8. PubMed ID: 2354220
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Kinetic properties of the sodium-calcium exchanger in rat brain synaptosomes.
    Fontana G; Rogowski RS; Blaustein MP
    J Physiol; 1995 Jun; 485 ( Pt 2)(Pt 2):349-64. PubMed ID: 7666363
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The Na+-Ca2+ exchange system in vascular smooth muscle cell membrane vesicles isolated from cultured cells and from tissue is similar.
    Matlib MA; Kihara M; Farrell C; Dage RC
    Biochim Biophys Acta; 1988 Mar; 939(1):173-7. PubMed ID: 3349079
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mechanism of passive Ca2+ permeability of vesicular sarcolemmal preparations from rat hearts.
    Kupriyanov VV; Preobrazhensky AN; Saks VA
    Biochim Biophys Acta; 1983 Feb; 728(2):239-53. PubMed ID: 6299343
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Na-Ca exchange in renal tubular basolateral membranes.
    Talor Z; Arruda JA
    Miner Electrolyte Metab; 1986; 12(4):239-45. PubMed ID: 3093831
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Chronic renal failure increases cytosolic Ca2+ of hepatocytes.
    Klin M; Smogorzewski M; Massry SG
    Am J Physiol; 1995 Jul; 269(1 Pt 1):G103-9. PubMed ID: 7631786
    [TBL] [Abstract][Full Text] [Related]  

  • 55. gamma-Aminobutyric acid-induced elevation of intracellular calcium concentration in pituitary cells of neonatal rats.
    Horváth G; Acs Z; Mergl Z; Nagy I; Makara GB
    Neuroendocrinology; 1993 Jun; 57(6):1028-34. PubMed ID: 8232761
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The low-affinity dihydropyridine receptor and Na+/Ca2+ exchanger are associated in adrenal medullary mitochondria.
    Palmero M; Gutierrez LM; Hidalgo MJ; Reig JA; Ballesta JJ; Viniegra S
    Biochem Pharmacol; 1995 Sep; 50(6):879-83. PubMed ID: 7575651
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Glutaric acid stimulates glutamate binding and astrocytic uptake and inhibits vesicular glutamate uptake in forebrain from young rats.
    Porciúncula LO; Emanuelli T; Tavares RG; Schwarzbold C; Frizzo ME; Souza DO; Wajner M
    Neurochem Int; 2004 Dec; 45(7):1075-86. PubMed ID: 15337307
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The measurement of Ca2+ inflow across the liver cell plasma membrane by using quin2 and studies of the roles of Na+ and extracellular Ca2+ in the mechanism of Ca2+ inflow.
    Crofts JN; Barritt GJ
    Biochem J; 1989 Nov; 264(1):61-70. PubMed ID: 2604718
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of verapamil on ischaemia-induced impairment of ATP-dependent calcium extrusion in rat heart sarcolemma.
    van Amsterdam FT; Goddijn MM; Haas M; Punt NC; Zaagsma J
    Br J Pharmacol; 1989 Sep; 98(1):161-6. PubMed ID: 2804544
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The effect of arachidonic acid and free fatty acids on vesicular uptake of glutamate and gamma-aminobutyric acid.
    Roseth S; Fykse EM; Fonnum F
    Eur J Pharmacol; 1998 Jan; 341(2-3):281-8. PubMed ID: 9543250
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.