These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 6873201)

  • 1. Pyridine nucleotides of rabbit cornea with histotoxic anoxia: chemical analysis, non-invasive fluorometry and physiological correlates.
    Masters BR; Riley MV; Fischbarg J; Chance B
    Exp Eye Res; 1983 Jul; 37(1):1-9. PubMed ID: 6873201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyridine nucleotides and phosphorylation potential of rabbit corneal epithelium and endothelium.
    Masters BR; Ghosh AK; Wilson J; Matschinsky FM
    Invest Ophthalmol Vis Sci; 1989 May; 30(5):861-68. PubMed ID: 2722442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes of corneal redox state in diabetic animal models.
    Shimazaki J; Tsubota K; Yoshida A; Tornheim K; Laing RA
    Cornea; 1995 Mar; 14(2):196-201. PubMed ID: 7743804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noninvasive measurements of pyridine nucleotide fluorescence from the cornea.
    Laing RA; Fischbarg J; Chance B
    Invest Ophthalmol Vis Sci; 1980 Jan; 19(1):96-102. PubMed ID: 7350140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A noninvasive optical method to measure oxygen tension at the corneal epithelium.
    Masters BR
    Curr Eye Res; 1985 Jun; 4(6):725-7. PubMed ID: 4028792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Altered redox states in corneal epithelium and endothelium: NADH fluorescence in rat and rabbit ocular tissue.
    Nissen P; Lieberman M; Fischbarg J; Chance B
    Exp Eye Res; 1980 Jun; 30(6):691-7. PubMed ID: 7418746
    [No Abstract]   [Full Text] [Related]  

  • 7. Noninvasive redox fluorometry: how light can be used to monitor alterations of corneal mitochondrial function.
    Masters BR
    Curr Eye Res; 1984 Jan; 3(1):23-6. PubMed ID: 6690223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation of redox fluorometry and analytical measurements of pyridine nucleotide.
    Shimazaki J; Tornheim K; Laing RA
    Invest Ophthalmol Vis Sci; 1989 Oct; 30(10):2274-8. PubMed ID: 2793366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Oxidation of pyridine nucleotides in injuries of the cornea].
    Egorova EV; Babizhaev MA; Travkin AG; Tolchinskaia AI; Ioshin IE
    Vestn Oftalmol; 1989; 105(3):43-6. PubMed ID: 2749972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorometric measurement of pyridine nucleotide reduction in the giant axon of the squid.
    Doane MG
    J Gen Physiol; 1967 Dec; 50(11):2603-32. PubMed ID: 4384698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluid transport, ATP level and ATPase activities in isolated rabbit corneal endothelium.
    Anderson EI; Fischbarg J; Spector A
    Biochim Biophys Acta; 1973 May; 307(3):557-62. PubMed ID: 4268888
    [No Abstract]   [Full Text] [Related]  

  • 12. Real time microfiberoptic redox fluorometry: modulation of the pyridine nucleotide status of the organogenesis-stage rat visceral yolk sac with cyanide and alloxan.
    Thorsrud BA; Harris C
    Toxicol Appl Pharmacol; 1995 Dec; 135(2):237-45. PubMed ID: 8545833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygen consumption by the component layers of the cornea.
    Freeman RD
    J Physiol; 1972 Aug; 225(1):15-32. PubMed ID: 4679699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noninvasive corneal redox fluorometry.
    Masters BR
    Curr Top Eye Res; 1984; 4():139-200. PubMed ID: 6375985
    [No Abstract]   [Full Text] [Related]  

  • 15. Some characteristics of the fluorescence lifetime of reduced pyridine nucleotides in isolated mitochondria, isolated hepatocytes, and perfused rat liver in situ.
    Wakita M; Nishimura G; Tamura M
    J Biochem; 1995 Dec; 118(6):1151-60. PubMed ID: 8720129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence of pyridine nucleotide and flavoproteins as an indicator of substrate oxidation and oxygen demand of the isolated perfused rat kidney.
    Franke H; Barlow CH; Chance B
    Int J Biochem; 1980; 12(1-2):269-75. PubMed ID: 7399033
    [No Abstract]   [Full Text] [Related]  

  • 17. [Permeability of the corneal endothelium to 3-O-methyl-D-glucose. 3. Effect of phlorizin and ouabain on the rabbit corneal endothelial permeability].
    Hayakawa M
    Nippon Ganka Gakkai Zasshi; 1971 Jan; 75():211-7. PubMed ID: 5103178
    [No Abstract]   [Full Text] [Related]  

  • 18. Three-dimensionally resolved NAD(P)H cellular metabolic redox imaging of the in situ cornea with two-photon excitation laser scanning microscopy.
    Piston DW; Masters BR; Webb WW
    J Microsc; 1995 Apr; 178(Pt 1):20-7. PubMed ID: 7745599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The function of the corneal endothelium in relation to corneal dehydration and nutrition.
    Mishima S; Hayakawa M
    Isr J Med Sci; 1972; 8(8):1507-18. PubMed ID: 4647815
    [No Abstract]   [Full Text] [Related]  

  • 20. [Noninvasive metabolic analysis of the diabetic cornea and lens: in vivo measurement].
    Shimazaki J; Tsubota K; Hattori M; Laing RA
    Nippon Ganka Gakkai Zasshi; 1992 Feb; 96(2):119-24. PubMed ID: 1558009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.