These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 687375)

  • 1. Diffusional increase and decrease in half-maximal-activity substrate concentrations with two-substrate enzymic reactions.
    Engasser JM; Hisland P
    Biochem J; 1978 Jul; 173(1):341-3. PubMed ID: 687375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of soluble and collagen-bound aspartate aminotransferase: diffusional effects with a two-substrate enzymatic reaction.
    Engasser JM
    J Biol Chem; 1977 Nov; 252(22):7919-22. PubMed ID: 914849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diffusional effects on the heterogeneous kinetics of two-substrate enzymic reactions.
    Engasser JM; Hisland P
    J Theor Biol; 1979 Apr; 77(4):427-40. PubMed ID: 491689
    [No Abstract]   [Full Text] [Related]  

  • 4. A fast evaluation of diffusion effects on bound enzyme activity.
    Engasser JM
    Biochim Biophys Acta; 1978 Oct; 526(2):301-10. PubMed ID: 718939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Steady-state kinetics of ubiquinol-cytochrome c reductase in bovine heart submitochondrial particles: diffusional effects.
    Fato R; Cavazzoni M; Castelluccio C; Parenti Castelli G; Palmer G; Degli Esposti M; Lenaz G
    Biochem J; 1993 Feb; 290 ( Pt 1)(Pt 1):225-36. PubMed ID: 8382478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The pre-eminence of k(cat) in the manifestation of optimal enzymic activity delineated by using the Briggs-Haldane two-step irreversible kinetic model.
    Brocklehurst K; Cornish-Bowden A
    Biochem J; 1976 Oct; 159(1):165-6. PubMed ID: 999634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of intrinsic properties of immobilized enzymes : 2. Kinetic studies on sepharose-staphylococcal nuclease in the presence of diffusional limitations.
    Guisán JM; Melo FV; Ballesteros A
    Appl Biochem Biotechnol; 1981 Mar; 6(1):37-51. PubMed ID: 24233656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Kinetics model of spherical immobilized cellulase].
    Zhou JQ; Chen SG; Zhu ZK
    Sheng Wu Gong Cheng Xue Bao; 2005 Sep; 21(5):799-803. PubMed ID: 16285524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification of kinetics for enzyme-catalysed reactions: implications for diffusional limitations at the 10 ml scale.
    Matosevic S; Micheletti M; Woodley JM; Lye GJ; Baganz F
    Biotechnol Lett; 2008 Jun; 30(6):995-1000. PubMed ID: 18224278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of substrate and product diffusion on the heterogeneous kinetics of enzymic reversible reactions.
    Marc A; Engasser JM
    J Theor Biol; 1982 Jan; 94(1):179-89. PubMed ID: 7078207
    [No Abstract]   [Full Text] [Related]  

  • 11. Diffusional correlations among multiple active sites in a single enzyme.
    Echeverria C; Kapral R
    Phys Chem Chem Phys; 2014 Apr; 16(13):6211-6. PubMed ID: 24562416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acetylcholinesterase: diffusional encounter rate constants for dumbbell models of ligand.
    Antosiewicz J; Gilson MK; Lee IH; McCammon JA
    Biophys J; 1995 Jan; 68(1):62-8. PubMed ID: 7711269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of ionization of the phosphate cosubstrate on phosphorolysis by purine nucleoside phosphorylase (PNP) of bacterial (E. coli) and mammalian (human) origin.
    Modrak-Wójcik A; Kirilenko A; Shugar D; Kierdaszuk B
    Eur Biophys J; 2008 Feb; 37(2):153-64. PubMed ID: 17639373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effective reaction rates in diffusion-limited phosphorylation-dephosphorylation cycles.
    Szymańska P; Kochańczyk M; Miękisz J; Lipniacki T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022702. PubMed ID: 25768526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superefficient enzymes.
    Stroppolo ME; Falconi M; Caccuri AM; Desideri A
    Cell Mol Life Sci; 2001 Sep; 58(10):1451-60. PubMed ID: 11693526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The steady-state kinetics of isotope exchange for one substrate-one product enzymic reactions.
    Darvey IG
    Biochem J; 1973 Dec; 135(4):861-6. PubMed ID: 4778281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical analysis of a translocation-like model with saturable kinetics.
    Maïsterrena B; Blum LJ; Coulet PR
    Biochem J; 1987 Mar; 242(3):835-9. PubMed ID: 3593279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte Carlo simulations of single- and multistep enzyme-catalyzed reaction sequences: effects of diffusion, cell size, enzyme fluctuations, colocalization, and segregation.
    Anderson JB; Anderson LE; Kussmann J
    J Chem Phys; 2010 Jul; 133(3):034104. PubMed ID: 20649305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature as a selective factor in protein evolution: the adaptational strategy of "compromise".
    Somero GN
    J Exp Zool; 1975 Oct; 194(1):175-88. PubMed ID: 1104753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Apparent aberrancy in the kinetics of intracellular metabolism of a single substrate by two enzymes. An alternative explanation for anomalies in the kinetics of sulfation and glucuronidation.
    Koster H; Mulder GJ
    Drug Metab Dispos; 1982; 10(4):330-5. PubMed ID: 6126330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.