These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 6874075)

  • 1. Structural preferences of beta-galactoside-reactive lectins on Actinomyces viscosus T14V and Actinomyces naeslundii WVU45.
    McIntire FC; Crosby LK; Barlow JJ; Matta KL
    Infect Immun; 1983 Aug; 41(2):848-50. PubMed ID: 6874075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibitors of coaggregation between Actinomyces viscosus T14V and Streptococcus sanguis 34: beta-galactosides, related sugars, and anionic amphipathic compounds.
    McIntire FC; Crosby LK; Vatter AE
    Infect Immun; 1982 Apr; 36(1):371-8. PubMed ID: 7076303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lectin-dependent attachment of Actinomyces naeslundii to receptors on epithelial cells.
    Brennan MJ; Cisar JO; Vatter AE; Sandberg AL
    Infect Immun; 1984 Nov; 46(2):459-64. PubMed ID: 6150008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of coaggregation between Actinomyces viscosus T14V and Streptococcus sanguis 34.
    McIntire FC; Vatter AE; Baros J; Arnold J
    Infect Immun; 1978 Sep; 21(3):978-88. PubMed ID: 30701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and characterization of coaggregation-defective mutants of Actinomyces viscosus, Actinomyces naeslundii, and Streptococcus sanguis.
    Kolenbrander PE
    Infect Immun; 1982 Sep; 37(3):1200-8. PubMed ID: 7129635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exclusive presence of lactose-sensitive fimbriae on a typical strain (WVU45) of Actinomyces naeslundii.
    Cisar JO; David VA; Curl SH; Vatter AE
    Infect Immun; 1984 Nov; 46(2):453-8. PubMed ID: 6150007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A possible mechanism for the cellular coaggregation between Actinomyces viscosus ATCC 19246 and Streptococcus sanguis ATCC 10557.
    Sato S; Koga T; Inoue M
    J Gen Microbiol; 1984 Jun; 130(6):1351-7. PubMed ID: 6481336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A polysaccharide from Streptococcus sanguis 34 that inhibits coaggregation of S. sanguis 34 with Actinomyces viscosus T14V.
    McIntire FC; Crosby LK; Vatter AE; Cisar JO; McNeil MR; Bush CA; Tjoa SS; Fennessey PV
    J Bacteriol; 1988 May; 170(5):2229-35. PubMed ID: 3360742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fimbriae of Actinomyces viscosus t14v: their relationship to the virulence-associated antigen and to coaggregation with Streptococcus sanguis 34.
    Cisar JO; McIntire FC; Vatter AE
    Adv Exp Med Biol; 1978; 107():695-701. PubMed ID: 84522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A factor from Actinomyces viscosus T14V that specifically aggregates Streptococcus sanguis H1.
    Mizuno J; Cisar JO; Vatter AE; Fennessey PV; McIntire FC
    Infect Immun; 1983 Jun; 40(3):1204-13. PubMed ID: 6303957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of lactose-reversible coadhesion of Actinomyces naeslundii WVU 398A and Streptococcus oralis 34 on the surface of hexadecane droplets.
    Ellen RP; Veisman H; Buivids IA; Rosenberg M
    Oral Microbiol Immunol; 1994 Dec; 9(6):364-71. PubMed ID: 7870472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular coaggregation of oral Streptococcus milleri with actinomyces.
    Eifuku H; Yakushiji T; Mizuno J; Kudo N; Inoue M
    Infect Immun; 1990 Jan; 58(1):163-8. PubMed ID: 2294047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of lytic bacteriophage for Actinomyces viscosus T14V as a probe for cell surface components mediating intergeneric coaggregation.
    Delisle AL; Donkersloot JA; Kolenbrander PE; Tylenda CA
    Infect Immun; 1988 Jan; 56(1):54-9. PubMed ID: 3335409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sialidase-enhanced lectin-like mechanism for Actinomyces viscosus and Actinomyces naeslundii hemagglutination.
    Ellen RP; Fillery ED; Chan KH; Grove DA
    Infect Immun; 1980 Feb; 27(2):335-43. PubMed ID: 6769798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular basis of bacterial adhesion in the oral cavity.
    Mergenhagen SE; Sandberg AL; Chassy BM; Brennan MJ; Yeung MK; Donkersloot JA; Cisar JO
    Rev Infect Dis; 1987; 9 Suppl 5():S467-74. PubMed ID: 2891180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specificity of coaggregation reactions between human oral streptococci and strains of Actinomyces viscosus or Actinomyces naeslundii.
    Cisar JO; Kolenbrander PE; McIntire FC
    Infect Immun; 1979 Jun; 24(3):742-52. PubMed ID: 468376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of bacterial interactions in the colonization of oral surfaces of Actinomyces viscosus.
    Kuramitsu HK; Paul A
    Infect Immun; 1980 Jul; 29(1):83-90. PubMed ID: 6772577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antibodies against the Ag2 fimbriae of Actinomyces viscosus T14V inhibit lactose-sensitive bacterial adherence.
    Revis GJ; Vatter AE; Crowle AJ; Cisar JO
    Infect Immun; 1982 Jun; 36(3):1217-22. PubMed ID: 6124506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New Actinomyces and Streptococcus coaggregation groups among human oral isolates from the same site.
    Kolenbrander PE; Inouye Y; Holdeman LV
    Infect Immun; 1983 Aug; 41(2):501-6. PubMed ID: 6409807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimulation of superoxide and lactoferrin release from polymorphonuclear leukocytes by the type 2 fimbrial lectin of Actinomyces viscosus T14V.
    Sandberg AL; Mudrick LL; Cisar JO; Metcalf JA; Malech HL
    Infect Immun; 1988 Jan; 56(1):267-9. PubMed ID: 2891619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.