These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
259 related articles for article (PubMed ID: 6874947)
81. The flow of sickle blood in glass capillaries: Fundamentals and potential applications. Brown CD; Aprelev AM; Aliprando M; Harkness EA; Ferrone FA Biophys J; 2021 Jun; 120(11):2138-2147. PubMed ID: 33861996 [TBL] [Abstract][Full Text] [Related]
82. Simultaneous polymerization and adhesion under hypoxia in sickle cell disease. Papageorgiou DP; Abidi SZ; Chang HY; Li X; Kato GJ; Karniadakis GE; Suresh S; Dao M Proc Natl Acad Sci U S A; 2018 Sep; 115(38):9473-9478. PubMed ID: 30190429 [TBL] [Abstract][Full Text] [Related]
83. Fluctuating deformability of oxygenated sickle erythrocytes in the asymptomatic state and in painful crisis. Lucas GS; Caldwell NM; Stuart J Br J Haematol; 1985 Feb; 59(2):363-8. PubMed ID: 3970860 [TBL] [Abstract][Full Text] [Related]
84. Deformability characteristics of sickle cells by microelastimetry. Havell TC; Hillman D; Lessin LS Am J Hematol; 1978; 4(1):9-16. PubMed ID: 655160 [TBL] [Abstract][Full Text] [Related]
90. Human erythrocyte fraction in "Percoll" density gradients. Rennie CM; Thompson S; Parker AC; Maddy A Clin Chim Acta; 1979 Oct; 98(1-2):119-25. PubMed ID: 498523 [TBL] [Abstract][Full Text] [Related]
91. Kinetics of water transport in sickle cells. Craescu CT; Cassoly R; Galacteros F; Prehu C Biochim Biophys Acta; 1985 Feb; 812(3):811-5. PubMed ID: 3970910 [TBL] [Abstract][Full Text] [Related]
92. The mechanism of in vitro formation of irreversibly sickled cells and modes of action of its inhibitors. Ohnishi ST; Horiuchi KY; Horiuchi K Biochim Biophys Acta; 1986 Apr; 886(1):119-29. PubMed ID: 3955078 [TBL] [Abstract][Full Text] [Related]
93. Preservation of deformability (filterability) of sickle cells by BW12C during progressive deoxygenation. Kenny MW; Stuart J Br J Haematol; 1983 Nov; 55(3):465-71. PubMed ID: 6639888 [TBL] [Abstract][Full Text] [Related]
94. Pressure effects on the flow behavior of sickle (HbSS) red cells in isolated (ex-vivo) microvascular system. Kaul DK; Nagel RL; Baez S Microvasc Res; 1983 Sep; 26(2):170-81. PubMed ID: 6621407 [TBL] [Abstract][Full Text] [Related]
95. Effects of transfusion on rheological properties of blood in sickle cell anemia. Jan K; Usami S; Smith JA Transfusion; 1982; 22(1):17-20. PubMed ID: 7064201 [TBL] [Abstract][Full Text] [Related]
96. Oxygen transport studies of normal and sickle erythrocyte suspensions in artificial capillaries. Stathopoulos NA; Hellums JD Adv Exp Med Biol; 1986; 200():35-41. PubMed ID: 3799323 [TBL] [Abstract][Full Text] [Related]
97. Influence of oxygen tension on the viscoelastic behavior of red blood cells in sickle cell disease. Nash GB; Johnson CS; Meiselman HJ Blood; 1986 Jan; 67(1):110-8. PubMed ID: 3940541 [TBL] [Abstract][Full Text] [Related]
98. Imaging flow cytometry for automated detection of hypoxia-induced erythrocyte shape change in sickle cell disease. van Beers EJ; Samsel L; Mendelsohn L; Saiyed R; Fertrin KY; Brantner CA; Daniels MP; Nichols J; McCoy JP; Kato GJ Am J Hematol; 2014 Jun; 89(6):598-603. PubMed ID: 24585634 [TBL] [Abstract][Full Text] [Related]
99. Filterability of mixtures of sickle and normal erythrocytes. Hasegawa S; Hiruma H; Uyesaka N; Noguchi CT; Schechter AN; Rodgers GP Am J Hematol; 1995 Oct; 50(2):91-7. PubMed ID: 7573006 [TBL] [Abstract][Full Text] [Related]
100. Regulation of K-Cl cotransport during reticulocyte maturation and erythrocyte aging in normal and sickle erythrocytes. Bize I; Taher S; Brugnara C Am J Physiol Cell Physiol; 2003 Jul; 285(1):C31-8. PubMed ID: 12606312 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]