These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 6875046)
1. Differentiation of fly visual interneurons after laser ablation of their central targets early in development. Nässel DR; Geiger G; Seyan HS J Comp Neurol; 1983 Jun; 216(4):421-8. PubMed ID: 6875046 [TBL] [Abstract][Full Text] [Related]
2. Neuronal organization in fly optic lobes altered by laser ablations early in development or by mutations of the eye. Nässel DR; Geiger G J Comp Neurol; 1983 Jun; 217(1):86-102. PubMed ID: 6875054 [TBL] [Abstract][Full Text] [Related]
3. Conserved and convergent organization in the optic lobes of insects and isopods, with reference to other crustacean taxa. Sinakevitch I; Douglass JK; Scholtz G; Loesel R; Strausfeld NJ J Comp Neurol; 2003 Dec; 467(2):150-72. PubMed ID: 14595766 [TBL] [Abstract][Full Text] [Related]
4. Retinotopic pathways providing motion-selective information to the lobula from peripheral elementary motion-detecting circuits. Douglass JK; Strausfeld NJ J Comp Neurol; 2003 Mar; 457(4):326-44. PubMed ID: 12561074 [TBL] [Abstract][Full Text] [Related]
5. Visual system of calliphorid flies: organization of optic glomeruli and their lobula complex efferents. Strausfeld NJ; Okamura JY J Comp Neurol; 2007 Jan; 500(1):166-88. PubMed ID: 17099891 [TBL] [Abstract][Full Text] [Related]
6. Dopamine-immunoreactive neurons in the blowfly visual system: light and electron microscopic immunocytochemistry. Nässel DR; Elekes K; Johansson KU J Chem Neuroanat; 1988; 1(6):311-25. PubMed ID: 3270359 [TBL] [Abstract][Full Text] [Related]
7. Mushroom body volumes and visual interneurons in ants: comparison between sexes and castes. Ehmer B; Gronenberg W J Comp Neurol; 2004 Feb; 469(2):198-213. PubMed ID: 14694534 [TBL] [Abstract][Full Text] [Related]
8. Characterization of a reduced-eye mutant of the grasshopper, Melanoplus sanguinipes. Emery DJ; Bell KA; Chapco W; Steeves JD J Embryol Exp Morphol; 1984 Oct; 83():189-211. PubMed ID: 6438267 [TBL] [Abstract][Full Text] [Related]
9. Response properties of motion-sensitive visual interneurons in the lobula plate of Drosophila melanogaster. Joesch M; Plett J; Borst A; Reiff DF Curr Biol; 2008 Mar; 18(5):368-74. PubMed ID: 18328703 [TBL] [Abstract][Full Text] [Related]
10. Conserved role of the Vsx genes supports a monophyletic origin for bilaterian visual systems. Erclik T; Hartenstein V; Lipshitz HD; McInnes RR Curr Biol; 2008 Sep; 18(17):1278-87. PubMed ID: 18723351 [TBL] [Abstract][Full Text] [Related]
11. Reorganization of visual interneurons during metamorphosis in the swallowtail butterfly Papilio xuthus. Ichikawa T J Comp Neurol; 1994 Feb; 340(2):185-93. PubMed ID: 8201018 [TBL] [Abstract][Full Text] [Related]
12. Organization of local interneurons in optic glomeruli of the dipterous visual system and comparisons with the antennal lobes. Strausfeld NJ; Sinakevitch I; Okamura JY Dev Neurobiol; 2007 Sep; 67(10):1267-88. PubMed ID: 17638381 [TBL] [Abstract][Full Text] [Related]
13. Spatio-temporal pattern of programmed cell death in the developing Drosophila optic lobe. Togane Y; Ayukawa R; Hara Y; Akagawa H; Iwabuchi K; Tsujimura H Dev Growth Differ; 2012 May; 54(4):503-18. PubMed ID: 22587328 [TBL] [Abstract][Full Text] [Related]
14. Postembryonic differentiation of serotonin-immunoreactive neurons in fleshfly optic lobes developing in situ or cultured in vivo without eye discs. Nässel DR; Ohlsson L; Sivasubramanian P J Comp Neurol; 1987 Jan; 255(3):327-40. PubMed ID: 3546409 [TBL] [Abstract][Full Text] [Related]
15. Postembryonic changes in the optic primordia and optic bud in the flesh fly Sarcophaga ruficornis fabr. (Diptera: Sarcophagidae). Singh YN; Singh M Z Mikrosk Anat Forsch; 1979; 93(5):901-14. PubMed ID: 545933 [TBL] [Abstract][Full Text] [Related]
16. A crustacean lobula plate: Morphology, connections, and retinotopic organization. Bengochea M; Berón de Astrada M; Tomsic D; Sztarker J J Comp Neurol; 2018 Jan; 526(1):109-119. PubMed ID: 28884472 [TBL] [Abstract][Full Text] [Related]
17. Neural organization of the third optic neuropil, the lobula, in the highly visual semiterrestrial crab Neohelice granulata. Lepore MG; Tomsic D; Sztarker J J Comp Neurol; 2022 Jul; 530(10):1533-1550. PubMed ID: 34985823 [TBL] [Abstract][Full Text] [Related]
18. Anatomical organization of retinotopic motion-sensitive pathways in the optic lobes of flies. Douglass JK; Strausfeld NJ Microsc Res Tech; 2003 Oct; 62(2):132-50. PubMed ID: 12966499 [TBL] [Abstract][Full Text] [Related]
19. Postembryonic changes in circadian photo-responsiveness rhythms of optic lobe interneurons in the cricket Gryllus bimaculatus. Uemura H; Tomioka K J Biol Rhythms; 2006 Aug; 21(4):279-89. PubMed ID: 16864648 [TBL] [Abstract][Full Text] [Related]
20. Organization and neural connections of the anterior optic tubercle in the brain of the locust, Schistocerca gregaria. Homberg U; Hofer S; Pfeiffer K; Gebhardt S J Comp Neurol; 2003 Aug; 462(4):415-30. PubMed ID: 12811810 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]