These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 6875046)
21. Morphological and physiological identification of medulla interneurons in the visual system of the tiger beetle larva. Okamura JY; Toh Y J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 Jun; 190(6):449-68. PubMed ID: 15069573 [TBL] [Abstract][Full Text] [Related]
22. Waves of differentiation in the fly visual system. Sato M; Suzuki T; Nakai Y Dev Biol; 2013 Aug; 380(1):1-11. PubMed ID: 23603492 [TBL] [Abstract][Full Text] [Related]
24. Segregation of visual input to the mushroom bodies in the honeybee (Apis mellifera). Ehmer B; Gronenberg W J Comp Neurol; 2002 Sep; 451(4):362-73. PubMed ID: 12210130 [TBL] [Abstract][Full Text] [Related]
25. Spatio-temporal pattern of neuronal differentiation in the Drosophila visual system: A user's guide to the dynamic morphology of the developing optic lobe. Ngo KT; Andrade I; Hartenstein V Dev Biol; 2017 Aug; 428(1):1-24. PubMed ID: 28533086 [TBL] [Abstract][Full Text] [Related]
26. Effects of locomotor stimulation and protein synthesis inhibition on circadian rhythms in size changes of L1 and L2 interneurons in the fly's visual system. Kula E; Pyza E Dev Neurobiol; 2007 Sep; 67(11):1433-42. PubMed ID: 17497696 [TBL] [Abstract][Full Text] [Related]
27. The complex synaptic pathways onto a looming-detector neuron revealed using serial block-face scanning electron microscopy. Wernitznig S; Rind FC; Zankel A; Bock E; Gütl D; Hobusch U; Nikolic M; Pargger L; Pritz E; Radulović S; Sele M; Summerauer S; Pölt P; Leitinger G J Comp Neurol; 2022 Feb; 530(2):518-536. PubMed ID: 34338325 [TBL] [Abstract][Full Text] [Related]
28. Allatostatin-like immunoreactivity in the optic lobe of the fly Sarcophaga bullata. Sivasubramanian P; Sood PP Cell Mol Biol (Noisy-le-grand); 2003 Jun; 49(4):641-4. PubMed ID: 12899456 [TBL] [Abstract][Full Text] [Related]
29. Organization of optic lobes that support motion detection in a semiterrestrial crab. Sztarker J; Strausfeld NJ; Tomsic D J Comp Neurol; 2005 Dec; 493(3):396-411. PubMed ID: 16261533 [TBL] [Abstract][Full Text] [Related]
30. Neuroanatomy of the visual afferents in the horseshoe crab (Limulus polyphemus). Chamberlain SC; Barlow RB J Comp Neurol; 1980 Jul; 192(2):387-400. PubMed ID: 7400403 [TBL] [Abstract][Full Text] [Related]
31. Movement-sensitive, polarization-sensitive, and light-sensitive neurons of the medulla and accessory medulla of the locust, Schistocerca gregaria. Homberg U; Würden S J Comp Neurol; 1997 Sep; 386(3):329-46. PubMed ID: 9303421 [TBL] [Abstract][Full Text] [Related]
32. Systematic analysis of the visual projection neurons of Drosophila melanogaster. I. Lobula-specific pathways. Otsuna H; Ito K J Comp Neurol; 2006 Aug; 497(6):928-58. PubMed ID: 16802334 [TBL] [Abstract][Full Text] [Related]
33. Neural organization of the second optic neuropil, the medulla, in the highly visual semiterrestrial crab Neohelice granulata. Sztarker J; Tomsic D J Comp Neurol; 2014 Oct; 522(14):3177-93. PubMed ID: 24659096 [TBL] [Abstract][Full Text] [Related]
34. Drosophila optic lobe neuroblasts triggered by a wave of proneural gene expression that is negatively regulated by JAK/STAT. Yasugi T; Umetsu D; Murakami S; Sato M; Tabata T Development; 2008 Apr; 135(8):1471-80. PubMed ID: 18339672 [TBL] [Abstract][Full Text] [Related]
35. FMRFamide-like immunocytochemistry in the brain and subesophageal ganglion of Triatoma infestans (Insecta: Heteroptera). Coexpression with beta-pigment-dispersing hormone and small cardioactive peptide B. Settembrini BP; Villar MJ Cell Tissue Res; 2005 Aug; 321(2):299-310. PubMed ID: 15947966 [TBL] [Abstract][Full Text] [Related]
36. Optomotor-blind expression in glial cells is required for correct axonal projection across the Drosophila inner optic chiasm. Hofmeyer K; Kretzschmar D; Pflugfelder GO Dev Biol; 2008 Mar; 315(1):28-41. PubMed ID: 18234176 [TBL] [Abstract][Full Text] [Related]
37. Representation of the stomatopod's retinal midband in the optic lobes: Putative neural substrates for integrating chromatic, achromatic and polarization information. Thoen HH; Sayre ME; Marshall J; Strausfeld NJ J Comp Neurol; 2018 May; 526(7):1148-1165. PubMed ID: 29377111 [TBL] [Abstract][Full Text] [Related]
38. Functionally and anatomically segregated visual pathways in the lobula complex of a calliphorid fly. Douglass JK; Strausfeld NJ J Comp Neurol; 1998 Jun; 396(1):84-104. PubMed ID: 9623889 [TBL] [Abstract][Full Text] [Related]
39. The Organization of the Second Optic Chiasm of the Shinomiya K; Horne JA; McLin S; Wiederman M; Nern A; Plaza SM; Meinertzhagen IA Front Neural Circuits; 2019; 13():65. PubMed ID: 31680879 [TBL] [Abstract][Full Text] [Related]
40. Synaptic circuits of the Drosophila optic lobe: the input terminals to the medulla. Takemura SY; Lu Z; Meinertzhagen IA J Comp Neurol; 2008 Aug; 509(5):493-513. PubMed ID: 18537121 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]