These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 6875409)
1. Oblique dipole layer potentials applied to electrocardiology. Colli-Franzone P; Guerri L; Viganotti C J Math Biol; 1983; 17(1):93-124. PubMed ID: 6875409 [TBL] [Abstract][Full Text] [Related]
2. Potential fields generated by oblique dipole layers modeling excitation wavefronts in the anisotropic myocardium. Comparison with potential fields elicited by paced dog hearts in a volume conductor. Colli-Franzone P; Guerri L; Viganotti C; Macchi E; Baruffi S; Spaggiari S; Taccardi B Circ Res; 1982 Sep; 51(3):330-46. PubMed ID: 7116582 [TBL] [Abstract][Full Text] [Related]
3. Wavefront propagation in an activation model of the anisotropic cardiac tissue: asymptotic analysis and numerical simulations. Colli Franzone P; Guerri L; Rovida S J Math Biol; 1990; 28(2):121-76. PubMed ID: 2319210 [TBL] [Abstract][Full Text] [Related]
4. Electric and magnetic fields from two-dimensional anisotropic bisyncytia. Sepulveda NG; Wikswo JP Biophys J; 1987 Apr; 51(4):557-68. PubMed ID: 3580484 [TBL] [Abstract][Full Text] [Related]
5. Some imaging parameters of the oblique dipole layer cardiac generator derivable from body surface electrical potentials. Greensite F IEEE Trans Biomed Eng; 1992 Feb; 39(2):159-64. PubMed ID: 1612619 [TBL] [Abstract][Full Text] [Related]
6. A bidomain model based BEM-FEM coupling formulation for anisotropic cardiac tissue. Fischer G; Tilg B; Modre R; Huiskamp GJ; Fetzer J; Rucker W; Wach P Ann Biomed Eng; 2000; 28(10):1229-43. PubMed ID: 11144984 [TBL] [Abstract][Full Text] [Related]
7. The combination method: a numerical technique for electrocardiographic calculations. Stanley PC; Pilkington TC IEEE Trans Biomed Eng; 1989 Apr; 36(4):456-61. PubMed ID: 2714825 [TBL] [Abstract][Full Text] [Related]
8. Three-dimensional finite element computer model of the forward problem of electrocardiology. Cábelka S; Kittnar O; Novotný J; Marsík F; Slavícek J Bratisl Lek Listy; 1996 Sep; 97(9):550-2. PubMed ID: 8948151 [TBL] [Abstract][Full Text] [Related]
9. Equivalent dipole sources to estimate the influence of extracellular myocardial anisotropy in thin-walled cardiac forward models. Jacquemet V Math Biosci; 2017 Apr; 286():31-38. PubMed ID: 28159543 [TBL] [Abstract][Full Text] [Related]
10. Solvability of the electrocardiology inverse problem for a moving dipole. Tolkachev V; Bershadsky B; Nemirko A Biol Cybern; 1993; 68(3):253-8. PubMed ID: 8452895 [TBL] [Abstract][Full Text] [Related]
11. Magnetic localisation of a current dipole implanted in dogs. Costa Monteiro E; Bruno AC; Louro SR; Costa Ribeiro P; Fonseca Costa A Phys Med Biol; 1987 Jan; 32(1):65-70. PubMed ID: 3823141 [TBL] [Abstract][Full Text] [Related]
12. Determination of the locus of the heart vector from body surface measurements: model experiments. Nelson CV; Hodgkin BC; Voukydis PC J Electrocardiol; 1975; 8(2):135-46. PubMed ID: 1151194 [TBL] [Abstract][Full Text] [Related]
13. A MATHEMATICAL-PHYSICAL MODEL OF THE GENESIS OF THE ELECTROCARDIOGRAM. GELERNTER HL; SWIHART JC Biophys J; 1964 Jul; 4(4):285-301. PubMed ID: 14197788 [TBL] [Abstract][Full Text] [Related]
14. Spreading of excitation in 3-D models of the anisotropic cardiac tissue. I. Validation of the eikonal model. Franzone PC; Guerri L Math Biosci; 1993 Feb; 113(2):145-209. PubMed ID: 8431650 [TBL] [Abstract][Full Text] [Related]
15. Extracellular potentials related to intracellular action potentials during impulse conduction in anisotropic canine cardiac muscle. Spach MS; Miller WT; Miller-Jones E; Warren RB; Barr RC Circ Res; 1979 Aug; 45(2):188-204. PubMed ID: 445703 [TBL] [Abstract][Full Text] [Related]
16. Effects of rotational myocardial anisotropy in forward potential computations with equivalent heart dipoles. Thivierge M; Gulrajani RM; Savard P Ann Biomed Eng; 1997; 25(3):477-98. PubMed ID: 9146803 [TBL] [Abstract][Full Text] [Related]
17. Mathematical modeling of the excitation process in myocardial tissue: influence of fiber rotation on wavefront propagation and potential field. Franzone PC; Guerri L; Tentoni S Math Biosci; 1990 Oct; 101(2):155-235. PubMed ID: 2134484 [TBL] [Abstract][Full Text] [Related]
18. Spread of excitation in 3-D models of the anisotropic cardiac tissue. II. Effects of fiber architecture and ventricular geometry. Franzone PC; Guerri L; Pennacchio M; Taccardi B Math Biosci; 1998 Jan; 147(2):131-71. PubMed ID: 9433061 [TBL] [Abstract][Full Text] [Related]
19. Description of cardiac sources in anisotropic cardiac muscle. Application of bidomain model. Geselowitz DB J Electrocardiol; 1992; 25 Suppl():65-7. PubMed ID: 1297711 [TBL] [Abstract][Full Text] [Related]
20. New quantitative and qualitative approaches to the inverse problem of electrocardiology: their theoretical relationship and experimental consistency. Greensite F; Huiskamp G; van Oosterom A Med Phys; 1990; 17(3):369-79. PubMed ID: 2385194 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]