BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 6875509)

  • 41. Electrical coupling between Aplysia bag cell neurons: characterization and role in synchronous firing.
    Dargaei Z; Colmers PL; Hodgson HM; Magoski NS
    J Neurophysiol; 2014 Dec; 112(11):2680-96. PubMed ID: 25185820
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Calcium transients evoked by climbing fiber and parallel fiber synaptic inputs in guinea pig cerebellar Purkinje neurons.
    Miyakawa H; Lev-Ram V; Lasser-Ross N; Ross WN
    J Neurophysiol; 1992 Oct; 68(4):1178-89. PubMed ID: 1359027
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An active membrane model of the cerebellar Purkinje cell II. Simulation of synaptic responses.
    De Schutter E; Bower JM
    J Neurophysiol; 1994 Jan; 71(1):401-19. PubMed ID: 8158238
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ephaptically generated potentials in CA1 neurons of rat's hippocampus in situ.
    Yim CC; Krnjević K; Dalkara T
    J Neurophysiol; 1986 Jul; 56(1):99-122. PubMed ID: 3746402
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Physiological properties of neurons in the ventral nucleus of the lateral lemniscus of the rat: intrinsic membrane properties and synaptic responses.
    Wu SH
    J Neurophysiol; 1999 Jun; 81(6):2862-74. PubMed ID: 10368403
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mitogenic activity of rat salivary glands after electrical stimulation of parasympathetic nerves.
    Schneyer CA; Humphreys-Beher MG; Hall HD; Jirakulsomchok D
    Am J Physiol; 1993 May; 264(5 Pt 1):G935-8. PubMed ID: 7684568
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Novel preparation for studying excitation-secretion coupling in the isolated single cell.
    Jones PG; Sawyer RT; Berry MS
    Nature; 1985 Jun 20-26; 315(6021):679-80. PubMed ID: 4010778
    [TBL] [Abstract][Full Text] [Related]  

  • 48. On the actions of compounds related to dopamine at a neurosecretory synapse.
    Ginsborg BL; Turnbull KW; House CR
    Br J Pharmacol; 1976 May; 57(1):133-40. PubMed ID: 1276532
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Early events in development of electrical activity and contraction in embryonic rat heart assessed by optical recording.
    Hirota A; Kamino K; Komuro H; Sakai T; Yada T
    J Physiol; 1985 Dec; 369():209-27. PubMed ID: 4093880
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dye absorption changes in single muscle fibers: an application of an automatic balancing circuit.
    Nakajima S; Gilai A; Dingeman D
    Pflugers Arch; 1976 Apr; 362(3):285-7. PubMed ID: 944436
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Specific reinnervation of a target organ by a pair of identified molluscan neurons.
    Murphy AD; Kater SB
    Brain Res; 1978 Nov; 156(2):322-8. PubMed ID: 709357
    [No Abstract]   [Full Text] [Related]  

  • 52. A method for leading off action currents from human salivary gland and for recording velocity of secretion.
    IWAMA K; SHINJO T
    Tohoku J Exp Med; 1950 Sep; 52(3-4):223-9. PubMed ID: 14809718
    [No Abstract]   [Full Text] [Related]  

  • 53. Imaging Voltage Globally and in Isofrequency Lamina in Slices of Mouse Ventral Cochlear Nucleus.
    Ma Y; Shu WC; Lin L; Cao XJ; Oertel D; Smith PH; Jackson MB
    eNeuro; 2023 Mar; 10(3):. PubMed ID: 36792362
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electrical coupling and its channels.
    Harris AL
    J Gen Physiol; 2018 Dec; 150(12):1606-1639. PubMed ID: 30389716
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Microparticles generated by decompression stress cause central nervous system injury manifested as neurohypophysial terminal action potential broadening.
    Yang M; Kosterin P; Salzberg BM; Milovanova TN; Bhopale VM; Thom SR
    J Appl Physiol (1985); 2013 Nov; 115(10):1481-6. PubMed ID: 24052032
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Micromolar 4-aminopyridine enhances invasion of a vertebrate neurosecretory terminal arborization: optical recording of action potential propagation using an ultrafast photodiode-MOSFET camera and a photodiode array.
    Obaid AL; Salzberg BM
    J Gen Physiol; 1996 Mar; 107(3):353-68. PubMed ID: 8868047
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of calcium on electrical propagation in early embryonic precontractile heart as revealed by multiple-site optical recording of action potentials.
    Komuro H; Hirota A; Yada T; Sakai T; Fujii S; Kamino K
    J Gen Physiol; 1985 Mar; 85(3):365-82. PubMed ID: 3921654
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Design of a multi-point laser scanned optical monitor of cardiac action potential propagation: application to microreentry in guinea pig atrium.
    Hill BC; Courtney KR
    Ann Biomed Eng; 1987; 15(6):567-77. PubMed ID: 3688585
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Optical recording of electrical activity from parallel fibres and other cell types in skate cerebellar slices in vitro.
    Konnerth A; Obaid AL; Salzberg BM
    J Physiol; 1987 Dec; 393():681-702. PubMed ID: 3446807
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Large and rapid changes in light scattering accompany secretion by nerve terminals in the mammalian neurohypophysis.
    Salzberg BM; Obaid AL; Gainer H
    J Gen Physiol; 1985 Sep; 86(3):395-411. PubMed ID: 2997364
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.