These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 6875632)

  • 41. Development of specific sensory-evoked synaptic networks in fetal mouse cord-brainstem cultures.
    Crain SM; Peterson ER
    Science; 1975 Apr; 188(4185):275-8. PubMed ID: 1118729
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Inhibition of glutamatergic synaptic input to spinal lamina II(o) neurons by presynaptic alpha(2)-adrenergic receptors.
    Pan YZ; Li DP; Pan HL
    J Neurophysiol; 2002 Apr; 87(4):1938-47. PubMed ID: 11929913
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Differentiation of dorsal root ganglion cells with processes in their synaptic target zone of embryonic mouse spinal cord: a retrograde tracer study.
    Barber RP; Vaughn JE
    J Neurocytol; 1986 Apr; 15(2):207-18. PubMed ID: 3723148
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enhanced neuronal regeneration by retinoic acid of murine dorsal root ganglia and of fetal murine and human spinal cord in vitro.
    Quinn SD; De Boni U
    In Vitro Cell Dev Biol; 1991 Jan; 27(1):55-62. PubMed ID: 2013554
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Competitive interactions between supernumerary and normal sensory neurons in the cockroach are mediated through a change in quantal content and not quantal size.
    Sosa MA; Blagburn JM
    J Neurophysiol; 1995 Oct; 74(4):1573-82. PubMed ID: 8989394
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Electrophysiologic study of cultured neurons dissociated from spinal cords and dorsal root ganglia of fetal mice.
    Peacock JH; Nelson PG; Goldstone MW
    Dev Biol; 1973 Jan; 30(1):137-52. PubMed ID: 4735361
    [No Abstract]   [Full Text] [Related]  

  • 47. Networks formed by dorsal root ganglion neurites within spinal cord explants: a computer-aided analysis of HRP intracellularly labeled neurons.
    Calvet MC; Calvet J; Teilhac JR; Drian MJ
    Brain Res; 1992 Jul; 584(1-2):1-10. PubMed ID: 1515930
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Synaptic connections in vitro: modulation of number and efficacy by electrical activity.
    Nelson PG; Yu C; Fields RD; Neale EA
    Science; 1989 May; 244(4904):585-7. PubMed ID: 2717942
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Chemically defined medium enhances bioelectric activity in mouse spinal cord-dorsal root ganglion cultures.
    Habets AM; Baker RE; Brenner E; Romijn HJ
    Neurosci Lett; 1981 Feb; 22(1):51-6. PubMed ID: 7219891
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characteristics of action potentials recorded from cat spinal ganglion neurons in vivo.
    Miletic V; Lu GW
    Brain Res Bull; 1993; 31(5):531-8. PubMed ID: 8495378
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Some functional effects of suppressing bioelectric activity in fetal mouse spinal cord-dorsal root ganglion explants.
    Baker RE; Corner MA; Lammertse T; Furth E
    Exp Neurol; 1986 Nov; 94(2):426-30. PubMed ID: 3770131
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Relation between structural and release parameters at the young rat sensorimotor connection.
    Karamian OA; Kozhanov VM; Chmykhova NM
    Neuroscience; 1991; 43(2-3):577-84. PubMed ID: 1922784
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Some properties of the transmitter release mechanism at the rat ganglionic synapse during potassium stimulation.
    Sacchi O; Perri V
    Brain Res; 1976 May; 107(2):275-89. PubMed ID: 1268728
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of gangliosides on the development of selective afferent connections within fetal mouse spinal cord explants.
    Baker RE
    Neurosci Lett; 1983 Oct; 41(1-2):81-4. PubMed ID: 6646520
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Spontaneous quantal currents in a central neuron match predictions from binomial analysis of evoked responses.
    Korn H; Burnod Y; Faber DS
    Proc Natl Acad Sci U S A; 1987 Aug; 84(16):5981-5. PubMed ID: 2441400
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Spinal cord tissue affects sprouting from aortic fragments in ex vivo co-culture.
    Mikhailova MM; Panteleyev AA; Paltsev MA; Panteleyev AA
    Cell Biol Int; 2019 Oct; 43(10):1193-1200. PubMed ID: 30761658
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Modeling of the quantal release at interneuronal synapses: analysis of permissible values of model moments.
    Dityatev AE; Kozhanov VM; Gapanovich SO
    J Neurosci Methods; 1992 Jul; 43(2-3):201-14. PubMed ID: 1328774
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Estimation of quantal parameters with multiple-probability fluctuation analysis.
    Saviane C; Silver RA
    Methods Mol Biol; 2007; 403():303-17. PubMed ID: 18828002
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Enhanced afferent synaptic functions in fetal mouse spinal cord-sensory ganglion explants following NGF-induced ganglion hypertrophy.
    Crain SM; Peterson ER
    Brain Res; 1974 Oct; 79(1):145-52. PubMed ID: 4473249
    [No Abstract]   [Full Text] [Related]  

  • 60. Extracting quantal properties of transmission at central synapses.
    Lanore F; Silver RA
    Neuromethods; 2016; 113():193-211. PubMed ID: 30245548
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.