These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 6875646)

  • 1. Swimming rhythm in decerebrated, paralyzed stingrays: normal and abnormal coupling.
    Droge MH; Leonard RB
    J Neurophysiol; 1983 Jul; 50(1):178-91. PubMed ID: 6875646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Swimming pattern in intact and decerebrated stingrays.
    Droge MH; Leonard RB
    J Neurophysiol; 1983 Jul; 50(1):162-77. PubMed ID: 6875645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The spinal GABA system modulates burst frequency and intersegmental coordination in the lamprey: differential effects of GABAA and GABAB receptors.
    Tegnér J; Matsushima T; el Manira A; Grillner S
    J Neurophysiol; 1993 Mar; 69(3):647-57. PubMed ID: 8385187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spinal cord pathways involved in initiation of swimming in the stingray, Dasyatis sabina: spinal cord stimulation and lesions.
    Williams BJ; Livingston CA; Leonard RB
    J Neurophysiol; 1984 Mar; 51(3):578-91. PubMed ID: 6699678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of groups of propriospinal interneurons on fictive swimming in the isolated spinal cord of the lamprey.
    Rovainen CM
    J Neurophysiol; 1985 Oct; 54(4):959-77. PubMed ID: 2999351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fictive locomotion in the lamprey spinal cord in vitro compared with swimming in the intact and spinal animal.
    Wallén P; Williams TL
    J Physiol; 1984 Feb; 347():225-39. PubMed ID: 6142945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlational analysis of fictive swimming in the lamprey reveals strong functional intersegmental coupling.
    Mellen N; Kiemel T; Cohen AH
    J Neurophysiol; 1995 Mar; 73(3):1020-30. PubMed ID: 7608752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rhythmic fluctuations of dorsal root potentials and antidromic discharges of primary afferents during fictive locomotion in the cat.
    Dubuc R; Cabelguen JM; Rossignol S
    J Neurophysiol; 1988 Dec; 60(6):2014-36. PubMed ID: 3236059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrically evoked fictive swimming in the low-spinal immobilized turtle.
    Juranek J; Currie SN
    J Neurophysiol; 2000 Jan; 83(1):146-55. PubMed ID: 10634861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Commissural interneurons in rhythm generation and intersegmental coupling in the lamprey spinal cord.
    Buchanan JT
    J Neurophysiol; 1999 May; 81(5):2037-45. PubMed ID: 10322045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Locomotion in the decerebrate stingray.
    Leonard RB; Rudomín P; Droge MH; Grossman AE; Willis WD
    Neurosci Lett; 1979 Oct; 14(2-3):315-9. PubMed ID: 530507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypergravity susceptibility of ventral root activity during fictive swimming in tadpoles (Xenopus laevis).
    Böser S; Horn ER
    Arch Ital Biol; 2006 May; 144(2):99-113. PubMed ID: 16642789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fictive swimming elicited by electrical stimulation of the midbrain in goldfish.
    Fetcho JR; Svoboda KR
    J Neurophysiol; 1993 Aug; 70(2):765-80. PubMed ID: 8410171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intersegmental coordination of the leech swimming rhythm. I. Roles of cycle period gradient and coupling strength.
    Pearce RA; Friesen WO
    J Neurophysiol; 1985 Dec; 54(6):1444-59. PubMed ID: 4087042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Locomotor activities in the decerebrate bird without phasic afferent input.
    Sholomenko GN; Funk GD; Steeves JD
    Neuroscience; 1991; 40(1):257-66. PubMed ID: 2052153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activity of fin muscles and fin motoneurons during swimming motor pattern in the lamprey.
    Mentel T; Krause A; Pabst M; El Manira A; Büschges A
    Eur J Neurosci; 2006 Apr; 23(8):2012-26. PubMed ID: 16630049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for specialized rhythm-generating mechanisms in the adult mammalian spinal cord.
    Frigon A; Gossard JP
    J Neurosci; 2010 May; 30(20):7061-71. PubMed ID: 20484648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The neuronal correlate of locomotion in fish. "Fictive swimming" induced in an in vitro preparation of the lamprey spinal cord.
    Cohen AH; Wallén P
    Exp Brain Res; 1980; 41(1):11-8. PubMed ID: 7461065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electromyographic identification of spinal oscillator patterns and recouplings in a patient with incomplete spinal cord lesion: oscillator formation training as a method to improve motor activities.
    Schalow G; Blanc Y; Jeltsch W; Zäch GA
    Gen Physiol Biophys; 1996 Aug; 15 Suppl 1():121-220. PubMed ID: 8934200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chapter 2--the spinal generation of phases and cycle duration.
    Gossard JP; Sirois J; Noué P; Côté MP; Ménard A; Leblond H; Frigon A
    Prog Brain Res; 2011; 188():15-29. PubMed ID: 21333800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.