These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 687593)

  • 41. Relationship of transmembrane pH and electrical gradients with respiration and adenosine 5'-triphosphate synthesis in mitochondria.
    Holian A; Wilson DF
    Biochemistry; 1980 Sep; 19(18):4213-21. PubMed ID: 7417402
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Changes in the membrane surface charge density and/or membrane potential of the porcine intestinal brush-border membrane vesicles induced by treatment with neuraminidase.
    Ohyashiki T; Taka M; Mohri T
    J Biochem; 1989 Oct; 106(4):584-8. PubMed ID: 2606911
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mitochondrial proton conductance and H+/O ratio are independent of electron transport rate in isolated hepatocytes.
    Porter RK; Brand MD
    Biochem J; 1995 Sep; 310 ( Pt 2)(Pt 2):379-82. PubMed ID: 7654171
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Interactions between a new class of eukaryotic antimicrobial agents and isolated rat liver mitochondria.
    Westerhoff HV; Hendler RW; Zasloff M; Juretić D
    Biochim Biophys Acta; 1989 Aug; 975(3):361-9. PubMed ID: 2758042
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Applicability of the ion-sensitive DDA+ electrode for measurement of rapid changes in transmembrane electric potentials].
    Schild L
    Z Med Lab Diagn; 1988; 29(4):201-8. PubMed ID: 3213154
    [No Abstract]   [Full Text] [Related]  

  • 46. The effect of membrane potential on the mammalian sodium-potassium pump reconstituted into phospholipid vesicles.
    Goldshlegger R; Karlish SJ; Rephaeli A; Stein WD
    J Physiol; 1987 Jun; 387():331-55. PubMed ID: 2443682
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Electrophoresis of chloride ions and changes in the membrane potential of energized mitochondria].
    Antonov VF; Ivanov AS
    Biofizika; 1975; 20(4):642-5. PubMed ID: 1201298
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ursodeoxycholic acid may inhibit deoxycholic acid-induced apoptosis by modulating mitochondrial transmembrane potential and reactive oxygen species production.
    Rodrigues CM; Fan G; Wong PY; Kren BT; Steer CJ
    Mol Med; 1998 Mar; 4(3):165-78. PubMed ID: 9562975
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Determination of membrane potentials in human and Amphiuma red blood cells by means of fluorescent probe.
    Hoffman JF; Laris PC
    J Physiol; 1974 Jun; 239(3):519-52. PubMed ID: 4851321
    [TBL] [Abstract][Full Text] [Related]  

  • 50. ATP-sensitive K+ channel in the mitochondrial inner membrane.
    Inoue I; Nagase H; Kishi K; Higuti T
    Nature; 1991 Jul; 352(6332):244-7. PubMed ID: 1857420
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Transmembrane potentials at the cell membrane and mitochondrial membranes of rat thymocytes at the early stage of developing a stress reaction using potential-sensitive fluorescent probes].
    Preobrazhenskiĭ AB; Rubtsov BV
    Biofizika; 1991; 36(4):628-31. PubMed ID: 1793748
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Rapid postnatal developmental changes in the passive proton permeability of the inner membrane in rat liver mitochondria.
    Valcarce C; Vitorica J; Satrústegui J; Cuezva JM
    J Biochem; 1990 Oct; 108(4):642-5. PubMed ID: 1963434
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A critical evaluation of in situ measurement of mitochondrial electrical potentials in single hepatocytes.
    Ubl JJ; Chatton JY; Chen S; Stucki JW
    Biochim Biophys Acta; 1996 Sep; 1276(2):124-32. PubMed ID: 8816946
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Oxidative phosphorylation and mitochondrial physiology: a critical review of chemiosmotic theory, and reinterpretation by the association-induction hypothesis.
    Ling GN
    Physiol Chem Phys; 1981; 13(1):29-96. PubMed ID: 7022492
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Photometric assessment of volume changes coupled with membrane potential in valinomycin-incorporated red blood cells.
    Yang XS; Kamino K
    Jpn J Physiol; 1997 Apr; 47(2):217-30. PubMed ID: 9201551
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nitric oxide, a physiological modulator of mitochondrial function.
    Okada S; Takehara Y; Yabuki M; Yoshioka T; Yasuda T; Inoue M; Utsumi K
    Physiol Chem Phys Med NMR; 1996; 28(2):69-82. PubMed ID: 8946766
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The purified and reconstituted ornithine/citrulline carrier from rat liver mitochondria: electrical nature and coupling of the exchange reaction with H+ translocation.
    Indiveri C; Tonazzi A; Stipani I; Palmieri F
    Biochem J; 1997 Oct; 327 ( Pt 2)(Pt 2):349-55. PubMed ID: 9359400
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Optical probes of membrane potential.
    Waggoner A
    J Membr Biol; 1976 Jun; 27(4):317-34. PubMed ID: 787526
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Functional efficiency of mitochondrial membrane of rats with hepatic chronic iron overload.
    Masini A; Trenti T; Ventura E; Ceccarelli-Stanzani D; Muscatello U
    Biochem Biophys Res Commun; 1984 Oct; 124(2):462-9. PubMed ID: 6548629
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Anacardic acid-mediated changes in membrane potential and pH gradient across liposomal membranes.
    Toyomizu M; Okamoto K; Akiba Y; Nakatsu T; Konishi T
    Biochim Biophys Acta; 2002 Jan; 1558(1):54-62. PubMed ID: 11750264
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.