These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 6876158)

  • 21. Alternative secondary structures in the 5' exon affect both forward and reverse self-splicing of the Tetrahymena intervening sequence RNA.
    Woodson SA; Cech TR
    Biochemistry; 1991 Feb; 30(8):2042-50. PubMed ID: 1998665
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The ribosomal RNA gene region in Acanthamoeba castellanii mitochondrial DNA. A case of evolutionary transfer of introns between mitochondria and plastids?
    Lonergan KM; Gray MW
    J Mol Biol; 1994 Jun; 239(4):476-99. PubMed ID: 8006963
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reconstitution of a group I intron self-splicing reaction with an activator RNA.
    van der Horst G; Christian A; Inoue T
    Proc Natl Acad Sci U S A; 1991 Jan; 88(1):184-8. PubMed ID: 1986364
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sequence of a ribosomal RNA gene intron from Tetrahymena.
    Wild MA; Sommer R
    Nature; 1980 Feb; 283(5748):693-4. PubMed ID: 7354863
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A group-I self-splicing intron in the nuclear small subunit rRNA-encoding gene of the green alga, Chlorella ellipsoidea C-87.
    Aimi T; Yamada T; Murooka Y
    Gene; 1994 Feb; 139(1):65-71. PubMed ID: 8112590
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Site-directed mutagenesis of core sequence elements 9R', 9L, 9R, and 2 in self-splicing Tetrahymena pre-rRNA.
    Williamson CL; Tierney WM; Kerker BJ; Burke JM
    J Biol Chem; 1987 Oct; 262(30):14672-82. PubMed ID: 3667597
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Compensatory mutations demonstrate that P8 and P6 are RNA secondary structure elements important for processing of a group I intron.
    Williamson CL; Desai NM; Burke JM
    Nucleic Acids Res; 1989 Jan; 17(2):675-89. PubMed ID: 2915927
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A tyrosyl-tRNA synthetase can function similarly to an RNA structure in the Tetrahymena ribozyme.
    Mohr G; Caprara MG; Guo Q; Lambowitz AM
    Nature; 1994 Jul; 370(6485):147-50. PubMed ID: 8022484
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Integration of the Tetrahymena group I intron into bacterial rRNA by reverse splicing in vivo.
    Roman J; Woodson SA
    Proc Natl Acad Sci U S A; 1998 Mar; 95(5):2134-9. PubMed ID: 9482851
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Self-splicing of a group I intron reveals partitioning of native and misfolded RNA populations in yeast.
    Jackson SA; Koduvayur S; Woodson SA
    RNA; 2006 Dec; 12(12):2149-59. PubMed ID: 17135489
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vivo facilitation of Tetrahymena group I intron splicing in Escherichia coli pre-ribosomal RNA.
    Zhang F; Ramsay ES; Woodson SA
    RNA; 1995 May; 1(3):284-92. PubMed ID: 7489500
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of an authentic intermediate in the self-splicing process of ribosomal precursor RNA in macronuclei of Tetrahymena thermophila.
    Kister KP; Eckert WA
    Nucleic Acids Res; 1987 Mar; 15(5):1905-20. PubMed ID: 3645543
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Six group I introns and three internal transcribed spacers in the chloroplast large subunit ribosomal RNA gene of the green alga Chlamydomonas eugametos.
    Turmel M; Boulanger J; Schnare MN; Gray MW; Lemieux C
    J Mol Biol; 1991 Mar; 218(2):293-311. PubMed ID: 1849178
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of products derived from self-splicing of intron aI5 alpha which is located in the mitochondrial COX I gene of Saccharomyces cerevisiae.
    Winter AJ; van der Horst G; Tabak HF
    Nucleic Acids Res; 1988 May; 16(9):3845-61. PubMed ID: 3287336
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of class I introns in a mitochondrial plasmid associated with senescence of Podospora anserina reveals extraordinary resemblance to the Tetrahymena ribosomal intron.
    Michel F; Cummings DJ
    Curr Genet; 1985; 10(1):69-79. PubMed ID: 3940064
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A self-splicing group I intron in the nuclear pre-rRNA of the green alga, Ankistrodesmus stipitatus.
    Dávila-Aponte JA; Huss VA; Sogin ML; Cech TR
    Nucleic Acids Res; 1991 Aug; 19(16):4429-36. PubMed ID: 1886767
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dissecting and analyzing the secondary structure domains of group I introns through the use of chimeric intron constructs.
    Tanner NK; Sargueil B
    J Mol Biol; 1995 Oct; 252(5):583-95. PubMed ID: 7563076
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of the nuclear large-subunit rRNA-encoding gene and the group-I self-splicing intron from Chlorella ellipsoidea C-87.
    Aimi T; Yamada T; Yamashita M; Murooka Y
    Gene; 1994 Jul; 145(1):139-44. PubMed ID: 8045414
    [TBL] [Abstract][Full Text] [Related]  

  • 39. New reactions of the ribosomal RNA precursor of Tetrahymena and the mechanism of self-splicing.
    Inoue T; Sullivan FX; Cech TR
    J Mol Biol; 1986 May; 189(1):143-65. PubMed ID: 2431151
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Group I self-splicing introns in both large and small subunit rRNA genes of Chlorella.
    Aimi T; Yamada T; Murooka Y
    Nucleic Acids Symp Ser; 1993; (29):159-60. PubMed ID: 8247750
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.