These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 6876158)

  • 41. RNA splicing in Neurospora mitochondria. The large rRNA intron contains a noncoded, 5'-terminal guanosine residue.
    Garriga G; Lambowitz AM
    J Biol Chem; 1983 Dec; 258(24):14745-8. PubMed ID: 6654887
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Evolutionary transfer of ORF-containing group I introns between different subcellular compartments (chloroplast and mitochondrion).
    Turmel M; Côté V; Otis C; Mercier JP; Gray MW; Lonergan KM; Lemieux C
    Mol Biol Evol; 1995 Jul; 12(4):533-45. PubMed ID: 7659010
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An optional group I intron between the chloroplast small subunit rRNA genes of Chlamydomonas moewusii and C. eugametos.
    Durocher V; Gauthier A; Bellemare G; Lemieux C
    Curr Genet; 1989 Apr; 15(4):277-82. PubMed ID: 2752448
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structure and evolution of myxomycete nuclear group I introns: a model for horizontal transfer by intron homing.
    Johansen S; Johansen T; Haugli F
    Curr Genet; 1992 Oct; 22(4):297-304. PubMed ID: 1394512
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A self-splicing group II intron in the mitochondrial large subunit rRNA (LSUrRNA) gene of the eukaryotic alga Scenedesmus obliquus.
    Kück U; Godehardt I; Schmidt U
    Nucleic Acids Res; 1990 May; 18(9):2691-7. PubMed ID: 1692614
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Splicing of the mitochondrial group-II intron rl1: conserved intron-exon interactions diminish splicing efficiency.
    Holländer V; Kück U
    Curr Genet; 1998 Feb; 33(2):117-23. PubMed ID: 9506899
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Group II intron splicing in chloroplasts: identificationof mutations determining intron stability and fate of exon RNA.
    Holländer V; Kück U
    Nucleic Acids Res; 1999 Jun; 27(11):2345-53. PubMed ID: 10325424
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A chemical phylogeny of group I introns based upon interference mapping of a bacterial ribozyme.
    Strauss-Soukup JK; Strobel SA
    J Mol Biol; 2000 Sep; 302(2):339-58. PubMed ID: 10970738
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A conserved base pair within helix P4 of the Tetrahymena ribozyme helps to form the tertiary structure required for self-splicing.
    Flor PJ; Flanegan JB; Cech TR
    EMBO J; 1989 Nov; 8(11):3391-9. PubMed ID: 2684642
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Analysis of the chloroplast large subunit ribosomal RNA gene from 17 Chlamydomonas taxa. Three internal transcribed spacers and 12 group I intron insertion sites.
    Turmel M; Gutell RR; Mercier JP; Otis C; Lemieux C
    J Mol Biol; 1993 Jul; 232(2):446-67. PubMed ID: 8393936
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A shortened form of the Tetrahymena thermophila group I intron can catalyze the complete splicing reaction in trans.
    Sargueil B; Tanner NK
    J Mol Biol; 1993 Oct; 233(4):629-43. PubMed ID: 8411170
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Association of a group I intron with its splice junction in 50S ribosomes: implications for intron toxicity.
    Nikolcheva T; Woodson SA
    RNA; 1997 Sep; 3(9):1016-27. PubMed ID: 9292500
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparative structure and genomic organization of the discontinuous mitochondrial ribosomal RNA genes of Chlamydomonas eugametos and Chlamydomonas reinhardtii.
    Denovan-Wright EM; Lee RW
    J Mol Biol; 1994 Aug; 241(2):298-311. PubMed ID: 7520083
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Structural conservation among three homologous introns of bacteriophage T4 and the group I introns of eukaryotes.
    Shub DA; Gott JM; Xu MQ; Lang BF; Michel F; Tomaschewski J; Pedersen-Lane J; Belfort M
    Proc Natl Acad Sci U S A; 1988 Feb; 85(4):1151-5. PubMed ID: 3422485
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A modified group I intron can function as both a ribozyme and a 5' exon in a trans-exon ligation reaction.
    Tasiouka KI; Burke JM
    Gene; 1994 Jun; 144(1):1-7. PubMed ID: 8026742
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Facilitation of group I splicing in vivo: misfolding of the Tetrahymena IVS and the role of ribosomal RNA exons.
    Nikolcheva T; Woodson SA
    J Mol Biol; 1999 Sep; 292(3):557-67. PubMed ID: 10497021
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Splicing of COB intron 5 requires pairing between the internal guide sequence and both flanking exons.
    Partono S; Lewin AS
    Proc Natl Acad Sci U S A; 1990 Nov; 87(21):8192-6. PubMed ID: 2236031
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Reverse splicing of the Tetrahymena IVS: evidence for multiple reaction sites in the 23S rRNA.
    Roman J; Woodson SA
    RNA; 1995 Jul; 1(5):478-90. PubMed ID: 7489509
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Group I permuted intron-exon (PIE) sequences self-splice to produce circular exons.
    Puttaraju M; Been MD
    Nucleic Acids Res; 1992 Oct; 20(20):5357-64. PubMed ID: 1279519
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Efficient trans-splicing of a yeast mitochondrial RNA group II intron implicates a strong 5' exon-intron interaction.
    Jacquier A; Rosbash M
    Science; 1986 Nov; 234(4780):1099-104. PubMed ID: 2430332
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.