BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 68762)

  • 21. Carbon sources for D-lactate formation in rat liver.
    Kondoh Y; Kawase M; Hirata M; Ohmori S
    J Biochem; 1994 Mar; 115(3):590-5. PubMed ID: 8056777
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of fructose 2,6-bisphosphate in the control by glucagon of gluconeogenesis from various precursors in isolated rat hepatocytes.
    Hue L; Bartrons R
    Biochem J; 1984 Feb; 218(1):165-70. PubMed ID: 6546872
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation and function of lactate oxidation in Streptococcus faecium.
    London J
    J Bacteriol; 1968 Apr; 95(4):1380-7. PubMed ID: 5646625
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Use of a Gluconobacter frateurii mutant to prevent dihydroxyacetone accumulation during glyceric acid production from glycerol.
    Habe H; Shimada Y; Fukuoka T; Kitamoto D; Itagaki M; Watanabe K; Yanagishita H; Yakushi T; Matsushita K; Sakaki K
    Biosci Biotechnol Biochem; 2010; 74(11):2330-2. PubMed ID: 21071844
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibition of glycolysis in boar sperm by alpha-chlorohydrin.
    Hutton P; Dawson AG; Jones AR
    Contraception; 1980 Nov; 22(5):505-12. PubMed ID: 7471740
    [TBL] [Abstract][Full Text] [Related]  

  • 26. THE OXIDATION OF D- AND L-GLYCERATE BY RAT LIVER.
    DAWKINS PD; DICKENS F
    Biochem J; 1965 Feb; 94(2):353-67. PubMed ID: 14346088
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metabolism of glycerol 3-phosphate by mature boar spermatozoa.
    Jones AR; Gillan L
    J Reprod Fertil; 1996 Mar; 106(2):321-7. PubMed ID: 8699417
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inhibition of hepatic gluconeogenesis by ethanol.
    Krebs HA; Freedland RA; Hems R; Stubbs M
    Biochem J; 1969 Mar; 112(1):117-24. PubMed ID: 5774487
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Utilization of glucose, alanine, lactate, and glycerol as lipogenic substrates by periuterine adipose tissue in situ in fed and starved rats.
    Palacín M; Lasunción MA; Herrera E
    J Lipid Res; 1988 Jan; 29(1):26-32. PubMed ID: 3356949
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metabolism of glycerol by mature boar spermatozoa.
    Jones AR; Chantrill LA; Cokinakis A
    J Reprod Fertil; 1992 Jan; 94(1):129-34. PubMed ID: 1552474
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Studies on leukocyte metabolism. I.
    Minakami S
    J Biochem; 1968 Jan; 63(1):83-8. PubMed ID: 4297629
    [No Abstract]   [Full Text] [Related]  

  • 32. Formation of glucose from hexoses, pentoses, polyols and related substances in kidney cortex.
    Krebs HA; Lund P
    Biochem J; 1966 Jan; 98(1):210-4. PubMed ID: 5938645
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantitative measurement of the L-type pentose phosphate cycle with [2-14C]glucose and [5-14C]glucose in isolated hepatocytes.
    Longenecker JP; Williams JF
    Biochem J; 1980 Jun; 188(3):859-65. PubMed ID: 7470039
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of 3-mercaptopicolinic acid and substrate interactions on the incorporation of lipogenic precursors into glyceride-glycerol, glyceride-fatty acids and nonesterified fatty acids in bovine adipose tissue.
    Smith SB; Prior RL
    Biochim Biophys Acta; 1982 Aug; 712(2):365-73. PubMed ID: 7126610
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [On the regulation of the carbohydrate catabolism in the ischemic heart muscle of the dog].
    Krause EG; Wollenberger A
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1968; 89(4):496-500. PubMed ID: 4176850
    [No Abstract]   [Full Text] [Related]  

  • 36. The effect of glycerol and dihydroxyacetone on hepatic adenine nucleotides.
    Woods HF; Krebs HA
    Biochem J; 1973 Jan; 132(1):55-60. PubMed ID: 4722900
    [TBL] [Abstract][Full Text] [Related]  

  • 37. L-Fucose metabolism in mammals. The conversion of L-fucose to two moles of L-lactate, of L-galactose to L-lactate and glycerate, and of D-arabinose to L-lactate and glycollate.
    Chan JY; Nwokoro NA; Schachter H
    J Biol Chem; 1979 Aug; 254(15):7060-8. PubMed ID: 457669
    [No Abstract]   [Full Text] [Related]  

  • 38. [Enzymes of fructose metabolism. Activity and distribution in the rat liver].
    Heinz F; Lamprecht W
    Hoppe Seylers Z Physiol Chem; 1967 Jul; 348(7):855-63. PubMed ID: 4298581
    [No Abstract]   [Full Text] [Related]  

  • 39. Effect of glucose on glycerol metabolism by Clostridium butyricum DSM 5431.
    Abbad-Andaloussi S; Amine J; Gerard P; Petitdemange H
    J Appl Microbiol; 1998 Apr; 84(4):515-22. PubMed ID: 9633649
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Autoregulatory shift from fructolysis to lactate gluconeogenisis in rat hepatocyte suspensions. The problem of metabolic zonation of liver parenchyma].
    Katz N; Jungermann K
    Hoppe Seylers Z Physiol Chem; 1976 Mar; 357(3):359-75. PubMed ID: 955564
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.