These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 687664)
1. Chemical structure and biodegradability of halogenate aromatic compounds. Substituent effects on 1,2-dioxygenation of benzoic acid. Reineke W; Knackmuss HJ Biochim Biophys Acta; 1978 Sep; 542(3):412-23. PubMed ID: 687664 [TBL] [Abstract][Full Text] [Related]
2. Chemical structure and biodegradability of halogenated aromatic compounds. Substituent effects on 1,2-dioxygenation of catechol. Dorn E; Knackmuss HJ Biochem J; 1978 Jul; 174(1):85-94. PubMed ID: 697766 [TBL] [Abstract][Full Text] [Related]
3. [On the mechanism of the biological persistence of halogenated and sulfonated aromatic hydrocarbons (author's transl)]. Knackmuss HJ; Beckmann W; Dorn E; Reineke W Zentralbl Bakteriol Orig B; 1976 Jul; 162(1-2):127-37. PubMed ID: 998040 [TBL] [Abstract][Full Text] [Related]
4. Chemical structure and biodegradability of halogenated aromatic compounds. Substituent effects on dehydrogenation of 3,5-cyclohexadiene-1,2-diol-1-carboxylic acid. Reineke W; Knackmuss HJ Biochim Biophys Acta; 1978 Sep; 542(3):424-9. PubMed ID: 687665 [TBL] [Abstract][Full Text] [Related]
5. Chemical structure and biodegradability of halogenated aromatic compounds. Two catechol 1,2-dioxygenases from a 3-chlorobenzoate-grown pseudomonad. Dorn E; Knackmuss HJ Biochem J; 1978 Jul; 174(1):73-84. PubMed ID: 697765 [TBL] [Abstract][Full Text] [Related]
6. Metabolism of benzoic acid by bacteria. Accumulation of (-)-3,5-cyclohexadiene-1,2-diol-1-carboxylic acid by mutant strain of Alcaligenes eutrophus. Reiner AM; Hegeman GD Biochemistry; 1971 Jun; 10(13):2530-6. PubMed ID: 4326771 [No Abstract] [Full Text] [Related]
7. Characterisation of a chromosomally encoded catechol 1,2-dioxygenase (E.C. 1.13.11.1) from Alcaligenes eutrophus CH34. Sauret-Ignazi G; Gagnon J; Béguin C; Barrelle M; Markowicz Y; Pelmont J; Toussaint A Arch Microbiol; 1996 Jul; 166(1):42-50. PubMed ID: 8661943 [TBL] [Abstract][Full Text] [Related]
8. Metabolism of benzoate and the methylbenzoates by Pseudomonas putida (arvilla) mt-2: evidence for the existence of a TOL plasmid. Williams PA; Murray K J Bacteriol; 1974 Oct; 120(1):416-23. PubMed ID: 4418209 [TBL] [Abstract][Full Text] [Related]
9. Characterization of Pseudomonas putida mutants unable to catabolize benzoate: cloning and characterization of Pseudomonas genes involved in benzoate catabolism and isolation of a chromosomal DNA fragment able to substitute for xylS in activation of the TOL lower-pathway promoter. Jeffrey WH; Cuskey SM; Chapman PJ; Resnick S; Olsen RH J Bacteriol; 1992 Aug; 174(15):4986-96. PubMed ID: 1629155 [TBL] [Abstract][Full Text] [Related]
10. Benzoate metabolism in Pseudomonas putida(arvilla) mt-2: demonstration of two benzoate pathways. Nakazawa T; Yokota T J Bacteriol; 1973 Jul; 115(1):262-7. PubMed ID: 4717515 [TBL] [Abstract][Full Text] [Related]
11. Phenol and benzoate metabolism by Pseudomonas putida: regulation of tangential pathways. Feist CF; Hegeman GD J Bacteriol; 1969 Nov; 100(2):869-77. PubMed ID: 5354952 [TBL] [Abstract][Full Text] [Related]
12. Reactivity of toluate dioxygenase with substituted benzoates and dioxygen. Ge Y; Vaillancourt FH; Agar NY; Eltis LD J Bacteriol; 2002 Aug; 184(15):4096-103. PubMed ID: 12107126 [TBL] [Abstract][Full Text] [Related]
13. Characterization of hybrid toluate and benzoate dioxygenases. Ge Y; Eltis LD J Bacteriol; 2003 Sep; 185(18):5333-41. PubMed ID: 12949084 [TBL] [Abstract][Full Text] [Related]
14. Metabolism of 3-chloro-, 4-chloro-, and 3,5-dichlorobenzoate by a pseudomonad. Hartmann J; Reineke W; Knackmuss HJ Appl Environ Microbiol; 1979 Mar; 37(3):421-8. PubMed ID: 453823 [TBL] [Abstract][Full Text] [Related]
15. Dissimilation of aromatic compounds by Alcaligenes eutrophus. Johnson BF; Stanier RY J Bacteriol; 1971 Aug; 107(2):468-75. PubMed ID: 5113598 [TBL] [Abstract][Full Text] [Related]
16. Conversion of chlorobiphenyls into phenylhexadienoates and benzoates by the enzymes of the upper pathway for polychlorobiphenyl degradation encoded by the bph locus of Pseudomonas sp. strain LB400. Seeger M; Timmis KN; Hofer B Appl Environ Microbiol; 1995 Jul; 61(7):2654-8. PubMed ID: 7618878 [TBL] [Abstract][Full Text] [Related]
17. Transmissible plasmid coding for the degradation of benzoate and m-toluate in Pseudomonas arvilla mt-2. Wong CL; Dunn NW Genet Res; 1974 Apr; 23(2):227-32. PubMed ID: 4424218 [No Abstract] [Full Text] [Related]
18. Metabolism of aromatic compounds by Caulobacter crescentus. Chatterjee DK; Bourquin AW J Bacteriol; 1987 May; 169(5):1993-6. PubMed ID: 3571158 [TBL] [Abstract][Full Text] [Related]
19. Maleylacetate reductase of Pseudomonas sp. strain B13: specificity of substrate conversion and halide elimination. Kaschabek SR; Reineke W J Bacteriol; 1995 Jan; 177(2):320-5. PubMed ID: 7814320 [TBL] [Abstract][Full Text] [Related]
20. Chemical structure and biodegradability of halogenated aromatic compounds. Conversion of chlorinated muconic acids into maleoylacetic acid. Schmidt E; Knackmuss HJ Biochem J; 1980 Oct; 192(1):339-47. PubMed ID: 7305906 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]