BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 687664)

  • 21. Availability of O2 as a substrate in the cytoplasm of bacteria under aerobic and microaerobic conditions.
    Arras T; Schirawski J; Unden G
    J Bacteriol; 1998 Apr; 180(8):2133-6. PubMed ID: 9555896
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Is the Hammett's constant free of steric effects?
    Rincón L; Almeida R
    J Phys Chem A; 2012 Jul; 116(28):7523-30. PubMed ID: 22697463
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Substituent effects on the acidity of weak acids. 2. Calculated gas-phase acidities of substituted benzoic acids.
    Wiberg KB
    J Org Chem; 2002 Jul; 67(14):4787-94. PubMed ID: 12098290
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Glycine conjugation of the substituted benzoic acids in vitro: structure-metabolism relationship study.
    Kasuya F; Igarashi K; Fukui M
    J Pharmacobiodyn; 1990 Jul; 13(7):432-40. PubMed ID: 2290127
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dehalogenation, denitration, dehydroxylation, and angular attack on substituted biphenyls and related compounds by a biphenyl dioxygenase.
    Seeger M; Cámara B; Hofer B
    J Bacteriol; 2001 Jun; 183(12):3548-55. PubMed ID: 11371517
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The beta-ketoadipate pathway.
    Stanier RY; Ornston LN
    Adv Microb Physiol; 1973; 9(0):89-151. PubMed ID: 4599397
    [No Abstract]   [Full Text] [Related]  

  • 27. Degradation of halogenated aromatic compounds.
    Commandeur LC; Parsons JR
    Biodegradation; 1990; 1(2-3):207-20. PubMed ID: 1368148
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bacterial metabolism of side chain fluorinated aromatics: cometabolism of 4-trifluoromethyl(TFM)-benzoate by 4-isopropylbenzoate grown Pseudomonas putida JT strains.
    Engesser KH; Rubio MA; Ribbons DW
    Arch Microbiol; 1988 Jan; 149(3):198-206. PubMed ID: 3365097
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of the -ketoadipate pathway in Alcaligenes eutrophus.
    Johnson BF; Stanier RY
    J Bacteriol; 1971 Aug; 107(2):476-85. PubMed ID: 5113599
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of cis-diols as intermediates in the oxidation of aromatic acids by a strain of Pseudomonas putida that contains a TOL plasmid.
    Whited GM; McCombie WR; Kwart LD; Gibson DT
    J Bacteriol; 1986 Jun; 166(3):1028-39. PubMed ID: 3711022
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The metabolism of p-fluorobenzoic acid by a Pseudomonas sp.
    Harper DB; Blakley ER
    Can J Microbiol; 1971 Aug; 17(8):1015-23. PubMed ID: 4328873
    [No Abstract]   [Full Text] [Related]  

  • 32. Influence of side-chain substituents on the position of cleavage of the benzene ring by Pseudomonas fluorescens.
    Seidman MM; Toms A; Wood JM
    J Bacteriol; 1969 Mar; 97(3):1192-7. PubMed ID: 5776526
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Comparative study of aromatic ring meta-cleavage enzymes in Pseudomonas strains with plasmid and chromosomal genetic control of the catabolism of biphenyl and m-toluate].
    Selifonov SA; Starozoĭtov II
    Biokhimiia; 1990 Dec; 55(12):2171-81. PubMed ID: 2096950
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Difference of the liver and kidney in glycine conjugation of ortho-substituted benzoic acids.
    Kasuya F; Yamaoka Y; Osawa E; Igarashi K; Fukui M
    Chem Biol Interact; 2000 Feb; 125(1):39-50. PubMed ID: 10724365
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolism of benzoic acid by bacteria: 3,5-cyclohexadiene-1,2-diol-1-carboxylic acid is an intermediate in the formation of catechol.
    Reiner AM
    J Bacteriol; 1971 Oct; 108(1):89-94. PubMed ID: 4399343
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enzymatic formation, stability, and spontaneous reactions of 4-fluoromuconolactone, a metabolite of the bacterial degradation of 4-fluorobenzoate.
    Schlömann M; Fischer P; Schmidt E; Knackmuss HJ
    J Bacteriol; 1990 Sep; 172(9):5119-29. PubMed ID: 2394680
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mathematical analysis of catabolic function loss in a population of Pseudomonas putida mt-2 during non-limited growth on benzoate.
    Duetz WA; Winson MK; van Andel JG; Williams PA
    J Gen Microbiol; 1991 Jun; 137(6):1363-8. PubMed ID: 1919510
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Degradation of phenol and m-toluate in Pseudomonas sp. strain EST1001 and its Pseudomonas putida transconjugants is determined by a multiplasmid system.
    Kivisaar MA; Habicht JK; Heinaru AL
    J Bacteriol; 1989 Sep; 171(9):5111-6. PubMed ID: 2768199
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantitative structure-activity relationship for the cleavage of C3/C4-substituted catechols by a prototypal extradiol catechol dioxygenase with broad substrate specificity.
    Ishida T; Tanaka H; Horiike K
    J Biochem; 2004 Jun; 135(6):721-30. PubMed ID: 15213248
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Loss of Tdn catabolic genes by deletion from and curing of plasmid pTDN1 in Pseudomonas putida: rate and mode of loss are substrate and pH dependent.
    Saint CP; Venables WA
    J Gen Microbiol; 1990 Apr; 136(4):627-36. PubMed ID: 2168928
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.