BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 687664)

  • 41. Enhancement of co-metabolism of chlorobenzoates by the co-substrate enrichment technique.
    Horvath RS
    Appl Microbiol; 1973 Jun; 25(6):961-3. PubMed ID: 4716724
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Heterologous expression of biphenyl dioxygenase-encoding genes from a gram-positive broad-spectrum polychlorinated biphenyl degrader and characterization of chlorobiphenyl oxidation by the gene products.
    McKay DB; Seeger M; Zielinski M; Hofer B; Timmis KN
    J Bacteriol; 1997 Mar; 179(6):1924-30. PubMed ID: 9068637
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Roles of the divergent branches of the meta-cleavage pathway in the degradation of benzoate and substituted benzoates.
    Harayama S; Mermod N; Rekik M; Lehrbach PR; Timmis KN
    J Bacteriol; 1987 Feb; 169(2):558-64. PubMed ID: 3542963
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cloning and expression of the benzoate dioxygenase genes from Rhodococcus sp. strain 19070.
    Haddad S; Eby DM; Neidle EL
    Appl Environ Microbiol; 2001 Jun; 67(6):2507-14. PubMed ID: 11375157
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Catechol oxygenase induction in Pseudomonas aeruginosa.
    Farr DR; Cain RB
    Biochem J; 1968 Feb; 106(4):879-85. PubMed ID: 4966085
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Analysis of preference for carbon source utilization among three strains of aromatic compounds degrading Pseudomonas.
    Karishma M; Trivedi VD; Choudhary A; Mhatre A; Kambli P; Desai J; Phale PS
    FEMS Microbiol Lett; 2015 Oct; 362(20):. PubMed ID: 26316546
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Transcriptional Modulation of Transport- and Metabolism-Associated Gene Clusters Leading to Utilization of Benzoate in Preference to Glucose in Pseudomonas putida CSV86.
    Choudhary A; Modak A; Apte SK; Phale PS
    Appl Environ Microbiol; 2017 Oct; 83(19):. PubMed ID: 28733285
    [TBL] [Abstract][Full Text] [Related]  

  • 48. THE METABOLISM OF HALOGEN-SUBSTITUTED BENZOIC ACIDS BY PSEUDOMONAS FLUORESCENS.
    HUGHES DE
    Biochem J; 1965 Jul; 96(1):181-8. PubMed ID: 14343128
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Analysis of the Gas Phase Acidity of Substituted Benzoic Acids Using Density Functional Concepts.
    Amador-Balderas JA; Martínez-Sánchez MA; Ramírez RE; Méndez F; Meléndez FJ
    Molecules; 2020 Apr; 25(7):. PubMed ID: 32252296
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Different types of dienelactone hydrolase in 4-fluorobenzoate-utilizing bacteria.
    Schlömann M; Schmidt E; Knackmuss HJ
    J Bacteriol; 1990 Sep; 172(9):5112-8. PubMed ID: 2394679
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Electronic and steric effects: how do they work in ionic liquids? The case of benzoic acid dissociation.
    D'Anna F; Marullo S; Vitale P; Noto R
    J Org Chem; 2010 Jul; 75(14):4828-34. PubMed ID: 20560656
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Physical map of the aromatic amine and m-toluate catabolic plasmid pTDN1 in Pseudomonas putida: location of a unique meta-cleavage pathway.
    Saint CP; McClure NC; Venables WA
    J Gen Microbiol; 1990 Apr; 136(4):615-25. PubMed ID: 2168927
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Chemical structure and biodegradability of halogenated aromatic compounds. Halogenated muconic acids as intermediates.
    Schmidt E; Remberg G; Knackmuss HJ
    Biochem J; 1980 Oct; 192(1):331-7. PubMed ID: 7305905
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Repression of 4-hydroxybenzoate transport and degradation by benzoate: a new layer of regulatory control in the Pseudomonas putida beta-ketoadipate pathway.
    Nichols NN; Harwood CS
    J Bacteriol; 1995 Dec; 177(24):7033-40. PubMed ID: 8522507
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Degradation of 2-bromo-, 2-chloro- and 2-fluorobenzoate by Pseudomonas putida CLB 250.
    Engesser KH; Schulte P
    FEMS Microbiol Lett; 1989 Jul; 51(1):143-7. PubMed ID: 2777062
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Aromatic acids are chemoattractants for Pseudomonas putida.
    Harwood CS; Rivelli M; Ornston LN
    J Bacteriol; 1984 Nov; 160(2):622-8. PubMed ID: 6501217
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Acetate utilization is inhibited by benzoate in Alcaligenes eutrophus: evidence for transcriptional control of the expression of acoE coding for acetyl coenzyme A synthetase.
    Ampe F; Lindley ND
    J Bacteriol; 1995 Oct; 177(20):5826-33. PubMed ID: 7592330
    [TBL] [Abstract][Full Text] [Related]  

  • 58. New aerobic benzoate oxidation pathway via benzoyl-coenzyme A and 3-hydroxybenzoyl-coenzyme A in a denitrifying Pseudomonas sp.
    Altenschmidt U; Oswald B; Steiner E; Herrmann H; Fuchs G
    J Bacteriol; 1993 Aug; 175(15):4851-8. PubMed ID: 8335640
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Catabolic pathways and cellular responses of Pseudomonas putida P8 during growth on benzoate with a proteomics approach.
    Cao B; Loh KC
    Biotechnol Bioeng; 2008 Dec; 101(6):1297-312. PubMed ID: 18980183
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Degradation of methoxylated benzoic acids by a Nocardia from a lignin-rich environment: significance to lignin degradation and effect of chloro substituents.
    Crawford RL; McCoy E; Harkin JM; Kirk TK; Obst JR
    Appl Microbiol; 1973 Aug; 26(2):176-84. PubMed ID: 4743871
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.