These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 6876938)

  • 1. The acidosis of chronic renal failure.
    Sabatini S
    Med Clin North Am; 1983 Jul; 67(4):845-58. PubMed ID: 6876938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acid excretion and serum electrolyte patterns in patients with advanced chronic renal failure.
    Ray S; Piraino B; Chong TK; el-Shahawy M; Puschett JB
    Miner Electrolyte Metab; 1990; 16(6):355-61. PubMed ID: 2128531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hyperchloremic normal gap metabolic acidosis.
    Palmer BF; Clegg DJ
    Minerva Endocrinol; 2019 Dec; 44(4):363-377. PubMed ID: 31347344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acid-base physiology in uremia.
    DuBose TD
    Artif Organs; 1982 Nov; 6(4):363-9. PubMed ID: 7165551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Electrolyte and acid-base balance disorders in advanced chronic kidney disease].
    Alcázar Arroyo R
    Nefrologia; 2008; 28 Suppl 3():87-93. PubMed ID: 19018744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of an acute oral protein load on renal acidification in healthy humans and in patients with chronic renal failure.
    de Santo NG; Capasso G; Malnic G; Anastasio P; Spitali L; D'Angelo A
    J Am Soc Nephrol; 1997 May; 8(5):784-92. PubMed ID: 9176848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of reduced renal mass on ammonium handling and net acid formation by the superficial and juxtamedullary nephron of the rat. Evidence for impaired reentrapment rather than decreased production of ammonium in the acidosis of uremia.
    Buerkert J; Martin D; Trigg D; Simon E
    J Clin Invest; 1983 Jun; 71(6):1661-75. PubMed ID: 6863538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An experimental renal acidification defect in patients with hereditary fructose intolerance. II. Its distinction from classic renal tubular acidosis; its resemblance to the renal acidification defect associated with the Fanconi syndrome of children with cystinosis.
    Morris RC
    J Clin Invest; 1968 Jul; 47(7):1648-63. PubMed ID: 5658593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid correction of metabolic acidosis in chronic renal failure: effect on parathyroid hormone activity.
    Lu KC; Shieh SD; Li BL; Chu P; Jan SY; Lin YF
    Nephron; 1994; 67(4):419-24. PubMed ID: 7969674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acute acid-base disorders. 2. Specific disturbances.
    Quintanilla AP
    Postgrad Med; 1976 Nov; 60(5):75-83. PubMed ID: 981088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acidosis and renal calcium excretion in experimental chronic renal failure.
    Marone CC; Wong NL; Sutton RA; Dirks JH
    Nephron; 1981; 28(6):294-6. PubMed ID: 6273757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Treatment of metabolic acidosis in patients with stage 3 chronic kidney disease with fruits and vegetables or oral bicarbonate reduces urine angiotensinogen and preserves glomerular filtration rate.
    Goraya N; Simoni J; Jo CH; Wesson DE
    Kidney Int; 2014 Nov; 86(5):1031-8. PubMed ID: 24694986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The maladaptive renal response to secondary hypocapnia during chronic HCl acidosis in the dog.
    Madias NE; Schwartz WB; Cohen JJ
    J Clin Invest; 1977 Dec; 60(6):1393-401. PubMed ID: 21198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acute correction of metabolic acidosis increases serum procollagen type I carboxyterminal propeptide in patients with chronic renal failure.
    Chu P; Lu KC; Lin YF
    J Formos Med Assoc; 2001 Nov; 100(11):748-52. PubMed ID: 11802533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic acidosis due to inapparent defects in renal acid excretion in a patient with chronic diarrhea.
    Phelps KR; Uribarri J
    Am J Nephrol; 1990; 10(1):37-43. PubMed ID: 2343879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bicarbonate reabsorption in chronic renal failure.
    Arrud JA; Carrasquillo T; Cubria A; Rademacher DR; Kurtzman NA
    Kidney Int; 1976 Jun; 9(6):481-8. PubMed ID: 940281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic Acidosis of CKD: An Update.
    Kraut JA; Madias NE
    Am J Kidney Dis; 2016 Feb; 67(2):307-17. PubMed ID: 26477665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional impairment in chronic renal disease. II. Studies of acid excretion.
    Gonick HC; Kleeman CR; Rubini ME; Maxwell MH
    Nephron; 1969; 6(1):28-49. PubMed ID: 5772763
    [No Abstract]   [Full Text] [Related]  

  • 19. Regulation of Acid-Base Balance in Chronic Kidney Disease.
    Nagami GT; Hamm LL
    Adv Chronic Kidney Dis; 2017 Sep; 24(5):274-279. PubMed ID: 29031353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of growth hormone on renal and systemic acid-base homeostasis in humans.
    Sicuro A; Mahlbacher K; Hulter HN; Krapf R
    Am J Physiol; 1998 Apr; 274(4):F650-7. PubMed ID: 9575887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.