These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 6877492)

  • 21. beta-Phenylethylamine enhances single cortical neurone responses to noradrenaline in the rat.
    Paterson IA; Boulton AA
    Brain Res Bull; 1988 Feb; 20(2):173-7. PubMed ID: 2897233
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Respones of cat dorsal raphe neurones to iontophoretically applied noradrenaline.
    Key BJ; Boakes RJ; Candy JM
    Neuropharmacology; 1980 Jan; 19(1):139-42. PubMed ID: 7360327
    [No Abstract]   [Full Text] [Related]  

  • 23. Cocaine actions in a central noradrenergic circuit: enhancement of cerebellar Purkinje neuron responses to iontophoretically applied GABA.
    Waterhouse BD; Stowe ZN; Jimenez-Rivera CA; Sessler FM; Woodward DJ
    Brain Res; 1991 Apr; 546(2):297-309. PubMed ID: 2070264
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On the mechanism of action of clonidine: effects on single central neurones.
    Anderson C; Stone TW
    Br J Pharmacol; 1974 Jul; 51(3):359-65. PubMed ID: 4451750
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrophysiological actions of norepinephrine in rat lateral hypothalamus. II. An in vitro study of the effects of iontophoretically applied norepinephrine on LH neuronal responses to gamma-aminobutyric acid (GABA).
    Cheng JT; Sessler FM; Azizi SA; Chapin JK; Waterhouse BD
    Brain Res; 1988 Apr; 446(1):90-105. PubMed ID: 3370486
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Responses of single cortical neurones to noradrenaline and dopamine.
    Bevan P; Bradshaw CM; Pun RY; Slater NT; Szabadi E
    Neuropharmacology; 1978 Aug; 17(8):611-7. PubMed ID: 29256
    [No Abstract]   [Full Text] [Related]  

  • 27. Effects of noradrenaline applied iontophoretically on rat superior collicular neurons.
    Sato H; Kayama Y
    Brain Res Bull; 1983 Apr; 10(4):453-7. PubMed ID: 6860974
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Antagonism of biogenic amine-induced depression of cerebral cortical neurones by Na+, K+-ATPase in inhibitors.
    Sastry BS; Phillis JW
    Can J Physiol Pharmacol; 1977 Apr; 55(2):170-9. PubMed ID: 141320
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Increased acetylcholine and quisqualate responsiveness after blockade of GABAB receptors.
    Andre P; Ferrat T; Steinman M; Olpe HR
    Eur J Pharmacol; 1992 Jul; 218(1):137-43. PubMed ID: 1327823
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A model for the mode of action of GABA on primary afferent terminals: depolarizing effects of GABA applied iontophoretically to neurones of mammalian dorsal root ganglia.
    Feltz P; Rasminsky M
    Neuropharmacology; 1974 Jun; 13(6):553-63. PubMed ID: 4153679
    [No Abstract]   [Full Text] [Related]  

  • 31. The effect of microelectrophoretically applied clonidine on single cerebral cortical neurones in the rat. Evidence for interaction with alpha 1-adrenoceptors.
    Bradshaw CM; Stoker MJ; Szabadi E
    Naunyn Schmiedebergs Arch Pharmacol; 1982 Sep; 320(3):230-4. PubMed ID: 6290900
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Potentiation of the depression by adenosine of rat cerebral cortical neurones by progestational agents.
    Phillis JW
    Br J Pharmacol; 1986 Dec; 89(4):693-702. PubMed ID: 3814905
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ca2(+)-dependence provides evidence for differing mechanisms of GABA-induced inositol phosphate formation and GABA potentiation of inositol phosphate formation induced by noradrenaline in rat cerebral cortex.
    Crawford ML; Young JM
    Brain Res Mol Brain Res; 1990 Jul; 8(2):181-3. PubMed ID: 2169570
    [TBL] [Abstract][Full Text] [Related]  

  • 34. GABA facilitation by noradrenaline shows supersensitivity in cerebellum after 6-hydroxydopamine.
    Moises HC; Hoffer BJ; Woodward DJ
    Naunyn Schmiedebergs Arch Pharmacol; 1980; 315(1):37-46. PubMed ID: 7242692
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A quantitative microiontophoretic analysis of the responses of central neurones to noradrenaline: interactions with cobalt, manganese, verapamil and dichloroisoprenaline.
    Freedman R; Hoffer BJ; Woodward DJ
    Br J Pharmacol; 1975 Aug; 54(4):529-39. PubMed ID: 240474
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hypersensitivity to histamine in the guinea-pig brain: microiontophoretic and biochemical studies.
    Haas HL; Wolf P; Palacios JM; Garbarg M; Barbin G; Schwartz JC
    Brain Res; 1978 Nov; 156(2):275-91. PubMed ID: 213164
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Changes in the activity of rat cortical and hippocampal neurones after the iontophoretic administration of beta-endorphin, glutamate and GABA.
    Strejcková A; Jakoubek B; Kraus M; Mares P
    Physiol Bohemoslov; 1985; 34(6):567-73. PubMed ID: 2868471
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neuronal responses to noradrenaline in the cerebral cortex: evidence against the involvement of alpha 2-adrenoceptors.
    Bradshaw CM; Sheridan RD; Szabadi E
    Br J Pharmacol; 1984 Jun; 82(2):453-8. PubMed ID: 6145471
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Potentiation by gamma-aminobutyric acid of alpha 1-agonist-induced accumulation of inositol phosphates in slices of rat cerebral cortex.
    Crawford ML; Young JM
    J Neurochem; 1990 Jun; 54(6):2100-9. PubMed ID: 1971011
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differential properties of type I and type II benzodiazepine receptors in mammalian CNS neurones.
    Yakushiji T; Shirasaki T; Munakata M; Hirata A; Akaike N
    Br J Pharmacol; 1993 Jul; 109(3):819-25. PubMed ID: 8395299
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.