These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 687769)
1. Spatial structures in a reaction-diffusion system--detailed analysis of the "Brusselator". Kubícek M; Rýzler V; Marek M Biophys Chem; 1978 Jul; 8(3):235-46. PubMed ID: 687769 [TBL] [Abstract][Full Text] [Related]
2. Pattern sensitivity to boundary and initial conditions in reaction-diffusion models. Arcuri P; Murray JD J Math Biol; 1986; 24(2):141-65. PubMed ID: 3755746 [TBL] [Abstract][Full Text] [Related]
3. [Stability of spatially nonuniform states of diffuse systems]. Belintsev BN; Livshits MA; Vol'kenshteĭn MV Biofizika; 1978; 23(6):1056-62. PubMed ID: 719020 [TBL] [Abstract][Full Text] [Related]
4. [Heterogeneity of the spatial distribution of the primordial organic substance as an initial stage of biological evolution]. Zhuravlev IuN; Tuzinkevich AV; Frisman EIa Biofizika; 2011; 56(1):143-9. PubMed ID: 21442897 [TBL] [Abstract][Full Text] [Related]
5. Effects of cross diffusion on Turing bifurcations in two-species reaction-transport systems. Kumar N; Horsthemke W Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 2):036105. PubMed ID: 21517556 [TBL] [Abstract][Full Text] [Related]
6. Spatio-temporal behaviors of a clock reaction in an open gel reactor. Benyaich K; Erneux T; Métens S; Villain S; Borckmans P Chaos; 2006 Sep; 16(3):037109. PubMed ID: 17014243 [TBL] [Abstract][Full Text] [Related]
7. OXYGEN-HEMOGLOBIN SYSTEM: A MODEL FOR FACILITATED MEMBRANOUS TRANSPORT. ZILVERSMIT DB Science; 1965 Aug; 149(3686):874-6. PubMed ID: 14332850 [TBL] [Abstract][Full Text] [Related]
8. Homoclinic snaking near a codimension-two Turing-Hopf bifurcation point in the Brusselator model. Tzou JC; Ma YP; Bayliss A; Matkowsky BJ; Volpert VA Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022908. PubMed ID: 23496592 [TBL] [Abstract][Full Text] [Related]
9. Spontaneous oscillations in two 2-component cells coupled by diffusion. Alexander JC J Math Biol; 1986; 23(2):205-19. PubMed ID: 3958635 [TBL] [Abstract][Full Text] [Related]
10. [Stability of spatially-nonhomogeneous stationary conditions of a diffuse system. Positional differentiation]. Belintsev BN; Livshits MA; Vol'kenshteĭn MV Biofizika; 1979; 24(1):117-23. PubMed ID: 435523 [TBL] [Abstract][Full Text] [Related]
11. Pattern formation in forced reaction diffusion systems with nearly degenerate bifurcations. Halloy J; Sonnino G; Coullet P Chaos; 2007 Sep; 17(3):037107. PubMed ID: 17903014 [TBL] [Abstract][Full Text] [Related]
12. Some analytical results about a simple reaction-diffusion system for morphogenesis. Rothe F J Math Biol; 1979 May; 7(4):375-84. PubMed ID: 469415 [TBL] [Abstract][Full Text] [Related]
13. The role of diffusion in bimolecular solution kinetics. Schurr JM Biophys J; 1970 Aug; 10(8):700-16. PubMed ID: 5475729 [TBL] [Abstract][Full Text] [Related]
14. Steady state bifurcation analysis of reaction-diffusion equations--a critique. van der Werff TJ; Wilhelm HE Bull Math Biol; 1978; 40(6):865-72. PubMed ID: 743574 [No Abstract] [Full Text] [Related]
15. Dissipative structures in two dimensions. Erneux T; Herschkowitz-Kaufman M Biophys Chem; 1975 Oct; 3(4):345-54. PubMed ID: 1191736 [TBL] [Abstract][Full Text] [Related]
16. Stationary localized structures and the effect of the delayed feedback in the Brusselator model. Kostet B; Tlidi M; Tabbert F; Frohoff-Hülsmann T; Gurevich SV; Averlant E; Rojas R; Sonnino G; Panajotov K Philos Trans A Math Phys Eng Sci; 2018 Nov; 376(2135):. PubMed ID: 30420547 [TBL] [Abstract][Full Text] [Related]
17. Spatial patterns for an interaction-diffusion equation in morphogenesis. Mimura MA; Nishiura Y J Math Biol; 1979 Apr; 7(3):243-63. PubMed ID: 469412 [TBL] [Abstract][Full Text] [Related]
18. Association kinetics with coupled three- and one-dimensional diffusion. Chain-length dependence of the association rate of specific DNA sites. Berg OG; Ehrenberg M Biophys Chem; 1982 Apr; 15(1):41-51. PubMed ID: 7074207 [TBL] [Abstract][Full Text] [Related]
19. Galerkin-Ritz procedures for approximate solutions to systems of reaction-diffusion equations. Rosen G Bull Math Biol; 1978; 40(6):853-63. PubMed ID: 743573 [No Abstract] [Full Text] [Related]
20. Morphological and chiral symmetry breaking in reaction-diffusion systems. Ding DF; Prigogine I J Theor Biol; 1987 Sep; 128(2):135-57. PubMed ID: 3431133 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]