These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 6878622)

  • 1. Characterization of the distribution of internal motions in the basic pancreatic trypsin inhibitor using a large number of internal NMR probes.
    Wagner G
    Q Rev Biophys; 1983 Feb; 16(1):1-57. PubMed ID: 6878622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amide proton exchange in proteins by EX1 kinetics: studies of the basic pancreatic trypsin inhibitor at variable p2H and temperature.
    Roder H; Wagner G; Wüthrich K
    Biochemistry; 1985 Dec; 24(25):7396-407. PubMed ID: 2417625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ring current effects in the conformation dependent NMR chemical shifts of aliphatic protons in the basic pancreatic trypsin inhibitor.
    Perkins SJ; Wüthrich K
    Biochim Biophys Acta; 1979 Feb; 576(2):409-23. PubMed ID: 427198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural characterization by nuclear magnetic resonance of a reactive-site 13carbon-labelled basic pancreatic trypsin inhibitor with the peptide bond Arg-39--Ala-40 cleaved and Arg-39 removed.
    Richarz R; Tschesche H; Wüthrich K
    Eur J Biochem; 1979 Dec; 102(2):563-71. PubMed ID: 527593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlations between internal mobility and stability of globular proteins.
    Wüthrich K; Wagner G; Richarz R; Braun W
    Biophys J; 1980 Oct; 32(1):549-60. PubMed ID: 7248460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 1H nuclear-magnetic-resonance studies of the porcine-pancreatic secretory trypsin inhibitor at 270 MHz.
    De Marco A; Menegatti E; Guarneri M
    Eur J Biochem; 1979 Dec; 102(1):185-94. PubMed ID: 520321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitrotyrosine chelation of nuclear magnetic resonance shift probes in proteins: application to bovine pancreatic trypsin inhibitor.
    Marinetti TD; Snyder GH; Sykes BD
    Biochemistry; 1977 Feb; 16(4):647-53. PubMed ID: 556950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nuclear magnetic resonance studies of internal mobility in globular proteins.
    Wüthrich K
    Biochem Soc Symp; 1981; (46):17-37. PubMed ID: 7039621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A 1H nuclear-magnetic-resonance study of the conformation and the molecular dynamics of the glycoprotein cow-colostrum trypsin inhibitor.
    Wagner G; Wütherich K; Tschesche H
    Eur J Biochem; 1978 May; 86(1):67-76. PubMed ID: 658047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 1H-NMR studies of the structure and stability of the bovine pancreatic secretory trypsin inhibitor.
    De Marco A; Menegatti E; Guarneri M
    J Biol Chem; 1982 Jul; 257(14):8337-42. PubMed ID: 7085670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The analysis of NMR relaxation data in terms of multiple internal motions.
    Jardetzky O; Ribeiro AA; King R
    Biochem Biophys Res Commun; 1980 Feb; 92(3):883-8. PubMed ID: 7362612
    [No Abstract]   [Full Text] [Related]  

  • 12. Two-dimensional NMR spectroscopy: an application to the study of flexibility of protein molecules.
    Nagayama K
    Adv Biophys; 1981; 14():139-204. PubMed ID: 7015809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Harmonic dynamics of proteins: normal modes and fluctuations in bovine pancreatic trypsin inhibitor.
    Brooks B; Karplus M
    Proc Natl Acad Sci U S A; 1983 Nov; 80(21):6571-5. PubMed ID: 6579545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. pH and temperature effects on the molecular conformation of the porcine pancreatic secretory trypsin inhibitor as detected by hydrogen-1 nuclear magnetic resonance.
    De Marco A; Menegatti E; Guarneri M
    Biochemistry; 1982 Jan; 21(2):222-9. PubMed ID: 6803827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time dependence of atomic fluctuations in proteins: analysis of local and collective motions in bovine pancreatic trypsin inhibitor.
    Swaminathan S; Ichiye T; van Gunsteren W; Karplus M
    Biochemistry; 1982 Oct; 21(21):5230-41. PubMed ID: 7171552
    [No Abstract]   [Full Text] [Related]  

  • 16. Hydrogen isotope exchange kinetics of single protons in bovine pancreatic trypsin inhibitor.
    Woodward CK; Hilton BD
    Biophys J; 1980 Oct; 32(1):561-75. PubMed ID: 7248461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A 1H nuclear-magnetic-resonance study of the solution conformation of the isoinhibitor K from Helix pomatia.
    Wagner G; Wüthrich K; Tschesche H
    Eur J Biochem; 1978 Sep; 89(2):367-77. PubMed ID: 710398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A study of the lysyl residues in the basic pancreatic trypsin inhibitor using 1H nuclear magnetic resonance at 360 Mhz.
    Brown LR; De Marco A; Wagner G; Wüthrich K
    Eur J Biochem; 1976 Feb; 62(1):103-7. PubMed ID: 2474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. p2H dependence of the exchange with the solvent of interior amide protons in basic pancreatic trypsin inhibitor modified by reduction of the disulfide bone 14--38.
    Wüthrich K; Eugster A; Wagner G
    J Mol Biol; 1980 Dec; 144(4):601-4. PubMed ID: 6265651
    [No Abstract]   [Full Text] [Related]  

  • 20. Dynamics of a small globular protein in terms of low-frequency vibrational modes.
    Go N; Noguti T; Nishikawa T
    Proc Natl Acad Sci U S A; 1983 Jun; 80(12):3696-700. PubMed ID: 6574507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.