These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 6879605)

  • 21. Experimental papillary necrosis of the kidney. IV. Medullary plasma flow.
    Solez K; Miller M; Quarles PA; Finer PM; Heptinstall RH
    Am J Pathol; 1974 Sep; 76(3):521-8. PubMed ID: 4472110
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-resolution (1)H NMR and magic angle spinning NMR spectroscopic investigation of the biochemical effects of 2-bromoethanamine in intact renal and hepatic tissue.
    Garrod S; Humpher E; Connor SC; Connelly JC; Spraul M; Nicholson JK; Holmes E
    Magn Reson Med; 2001 May; 45(5):781-90. PubMed ID: 11323804
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of renal papillary antigen 1 (RPA-1), a biomarker of renal papillary necrosis.
    Price SA; Davies D; Rowlinson R; Copley CG; Roche A; Falkenberg FW; Riccardi D; Betton GR
    Toxicol Pathol; 2010 Apr; 38(3):346-58. PubMed ID: 20233945
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cellular mechanisms of drug-induced papillary necrosis.
    Sabatini S
    J Pharmacol Exp Ther; 1985 Jan; 232(1):214-9. PubMed ID: 2981316
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of acetaminophen on pig kidneys with a 2-bromoethanamine-induced papillary necrosis.
    Gregg NJ; Robbins ME; Hopewell JW; Bach PH
    Ren Fail; 1990; 12(3):157-63. PubMed ID: 2287767
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Functional characterization of drug-induced experimental papillary necrosis.
    Arruda JA; Sabatini S; Mehta PK; Sodhi B; Baranowski R
    Kidney Int; 1979 Mar; 15(3):264-75. PubMed ID: 513489
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Early changes in renal function following chemically induced nephropathy.
    Wilks MF; Schmidt-Nielsen B; Stolte H
    Clin Physiol Biochem; 1986; 4(4):239-51. PubMed ID: 3757411
    [TBL] [Abstract][Full Text] [Related]  

  • 28. N-acetyl-L-cysteine abolishes the bromoethylamine-induced choline incorporation into renal papillary tissue.
    Thielemann LE; Rodrigo RA; Oberhauser EW; Rosenblut G; Videla LA
    J Biochem Toxicol; 1995 Oct; 10(5):251-257. PubMed ID: 8847707
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pathophysiology of drug-induced papillary necrosis.
    Sabatini S
    Fundam Appl Toxicol; 1984 Dec; 4(6):909-21. PubMed ID: 6394414
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Urinary markers of nephrotoxicity following administration of 2 bromoethanamine hydrobromide a comparison with hexachlorobutadiene.
    Ligia Delacruz Mercé Moret Cecilia Guastadisegni And Peter H Bach
    Biomarkers; 1997; 2(3):169-74. PubMed ID: 23899177
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of different amino acidic pretreatments that protect the kidney against papillary necrosis induced by bromoethylamine on differential distribution of renal nonprotein sulfhydryls.
    Thielemann LE; Rosenblut G; Cerda MC; Oberhauser EW; De Geyter MA; Videla LA
    J Biochem Toxicol; 1991; 6(2):155-9. PubMed ID: 1941902
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of renal papillary-medullary lesion on the antihypertensive effect of furosemide and development of salt-sensitive hypertension in Dahl-S rats.
    Haugan K; Shalmi M; Petersen JS; Marcussen N; Spannow J; Christensen S
    J Pharmacol Exp Ther; 1997 Mar; 280(3):1415-22. PubMed ID: 9067331
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Renal and cardiovascular effects of renal medullary damage with bromoethylamine in dogs.
    Szenasi G; Alcorn D; Anderson WP
    Blood Press; 1994 Mar; 3(1-2):127-36. PubMed ID: 8199713
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Urinary metabolites of 2-bromoethanamine identified by stable isotope labelling: evidence for carbamoylation and glutathione conjugation.
    Shipkova P; Vassallo JD; Aranibar N; Hnatyshyn S; Zhang H; Clayton TA; Cantor GH; Sanders M; Coen M; Lindon JC; Holmes E; Nicholson JK; Lehman-McKeeman L
    Xenobiotica; 2011 Feb; 41(2):144-54. PubMed ID: 21043805
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Experimental renal papillary necrosis in rats: microangiographic and tubular micropuncture injection studies.
    Cuttino JT; Goss FU; Clark RL; Marr MC
    Invest Radiol; 1981; 16(2):107-14. PubMed ID: 7216700
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Investigation of regional glutathione levels in a model of chemically-induced renal papillary necrosis.
    Lenz SD
    Food Chem Toxicol; 1996 May; 34(5):489-94. PubMed ID: 8655099
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Arachidonic-acid-dependent metabolism of 2-bromoethanamine to a toxic metabolite in rat medullary interstitial cell cultures.
    Grieve EM; Whiting PH; Hawksworth GM
    Toxicol Lett; 1990 Sep; 53(1-2):225-6. PubMed ID: 2120799
    [No Abstract]   [Full Text] [Related]  

  • 38. Role of renal papillae in the regulation of sodium excretion during acute elevation of renal perfusion pressure in the rat.
    Chen PS; Caldwell RM; Hsu CH
    Hypertension; 1984; 6(6 Pt 1):893-8. PubMed ID: 6519746
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Iodinated contrast induced renal vasoconstriction is due in part to the downregulation of renal cortical and medullary nitric oxide synthesis.
    Myers SI; Wang L; Liu F; Bartula LL
    J Vasc Surg; 2006 Aug; 44(2):383-91. PubMed ID: 16890873
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Serotonin (5-HT1A-receptor) agonist-induced collecting duct vacuolation and renal papillary necrosis in the rat.
    Rinke M; Bomhard EM; Hildebrand H; Leser KH; Loof I; Ruehl-Fehlert C
    Toxicol Pathol; 1998; 26(1):152-9. PubMed ID: 9502398
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.