These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
31. Effect of different amino acidic pretreatments that protect the kidney against papillary necrosis induced by bromoethylamine on differential distribution of renal nonprotein sulfhydryls. Thielemann LE; Rosenblut G; Cerda MC; Oberhauser EW; De Geyter MA; Videla LA J Biochem Toxicol; 1991; 6(2):155-9. PubMed ID: 1941902 [TBL] [Abstract][Full Text] [Related]
32. Effects of renal papillary-medullary lesion on the antihypertensive effect of furosemide and development of salt-sensitive hypertension in Dahl-S rats. Haugan K; Shalmi M; Petersen JS; Marcussen N; Spannow J; Christensen S J Pharmacol Exp Ther; 1997 Mar; 280(3):1415-22. PubMed ID: 9067331 [TBL] [Abstract][Full Text] [Related]
33. Renal and cardiovascular effects of renal medullary damage with bromoethylamine in dogs. Szenasi G; Alcorn D; Anderson WP Blood Press; 1994 Mar; 3(1-2):127-36. PubMed ID: 8199713 [TBL] [Abstract][Full Text] [Related]
34. Urinary metabolites of 2-bromoethanamine identified by stable isotope labelling: evidence for carbamoylation and glutathione conjugation. Shipkova P; Vassallo JD; Aranibar N; Hnatyshyn S; Zhang H; Clayton TA; Cantor GH; Sanders M; Coen M; Lindon JC; Holmes E; Nicholson JK; Lehman-McKeeman L Xenobiotica; 2011 Feb; 41(2):144-54. PubMed ID: 21043805 [TBL] [Abstract][Full Text] [Related]
35. Experimental renal papillary necrosis in rats: microangiographic and tubular micropuncture injection studies. Cuttino JT; Goss FU; Clark RL; Marr MC Invest Radiol; 1981; 16(2):107-14. PubMed ID: 7216700 [TBL] [Abstract][Full Text] [Related]
36. Investigation of regional glutathione levels in a model of chemically-induced renal papillary necrosis. Lenz SD Food Chem Toxicol; 1996 May; 34(5):489-94. PubMed ID: 8655099 [TBL] [Abstract][Full Text] [Related]
37. Arachidonic-acid-dependent metabolism of 2-bromoethanamine to a toxic metabolite in rat medullary interstitial cell cultures. Grieve EM; Whiting PH; Hawksworth GM Toxicol Lett; 1990 Sep; 53(1-2):225-6. PubMed ID: 2120799 [No Abstract] [Full Text] [Related]
38. Role of renal papillae in the regulation of sodium excretion during acute elevation of renal perfusion pressure in the rat. Chen PS; Caldwell RM; Hsu CH Hypertension; 1984; 6(6 Pt 1):893-8. PubMed ID: 6519746 [TBL] [Abstract][Full Text] [Related]
39. Iodinated contrast induced renal vasoconstriction is due in part to the downregulation of renal cortical and medullary nitric oxide synthesis. Myers SI; Wang L; Liu F; Bartula LL J Vasc Surg; 2006 Aug; 44(2):383-91. PubMed ID: 16890873 [TBL] [Abstract][Full Text] [Related]
40. Serotonin (5-HT1A-receptor) agonist-induced collecting duct vacuolation and renal papillary necrosis in the rat. Rinke M; Bomhard EM; Hildebrand H; Leser KH; Loof I; Ruehl-Fehlert C Toxicol Pathol; 1998; 26(1):152-9. PubMed ID: 9502398 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]