These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 6879605)

  • 41. Effect of nicotine on the renal microcirculation in anesthetized rats: a potential for medullary hypoxic injury?
    Heyman SN; Goldfarb M; Rosenberger C; Shina A; Rosen S
    Am J Nephrol; 2005; 25(3):226-32. PubMed ID: 15908742
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Experimental renal papillary necrosis.
    Molland EA
    Kidney Int; 1978 Jan; 13(1):5-14. PubMed ID: 713267
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Urinary antigens as markers of papillary toxicity. II: Application of monoclonal antibodies for the determination of papillary antigens in rat urine.
    Hildebrand H; Rinke M; Schlüter G; Bomhard E; Falkenberg FW
    Arch Toxicol; 1999; 73(4-5):233-45. PubMed ID: 10463389
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Toxicogenomic biomarkers for renal papillary injury in rats.
    Uehara T; Kondo C; Morikawa Y; Hanafusa H; Ueda S; Minowa Y; Nakatsu N; Ono A; Maruyama T; Kato I; Yamate J; Yamada H; Ohno Y; Urushidani T
    Toxicology; 2013 Jan; 303():1-8. PubMed ID: 23142791
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The effects of carbon dioxide versus ioxaglate in the rat kidney.
    Palm F; Bergqvist D; Carlsson PO; Hellberg O; Nyman R; Hansell P; Liss P
    J Vasc Interv Radiol; 2005 Feb; 16(2 Pt 1):269-74. PubMed ID: 15713929
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Natriuretic effect of atriopeptin III in rats with papillary necrosis.
    Garcia-Estañ J; Takezawa K; Roman RJ
    Am J Physiol; 1989 Nov; 257(5 Pt 2):F859-65. PubMed ID: 2531550
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Role of the renal medulla in adrenocorticotrophin-induced hypertension in rats.
    Li M; Birchall I; Kincaid-Smith PS; Whitworth JA
    J Hypertens; 1992 Oct; 10(10):1129-36. PubMed ID: 1334993
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The effect of N-phenylanthranilic acid-induced renal papillary necrosis on urinary acidification and renal electrolyte handling.
    Hardy TL; Bach PH
    Toxicol Appl Pharmacol; 1984 Sep; 75(2):265-77. PubMed ID: 6474461
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Suprarenal aortic clamping and reperfusion decreases medullary and cortical blood flow by decreased endogenous renal nitric oxide and PGE2 synthesis.
    Myers SI; Wang L; Liu F; Bartula LL
    J Vasc Surg; 2005 Sep; 42(3):524-31. PubMed ID: 16171601
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Role of urinary concentrating ability in the generation of toxic papillary necrosis.
    Sabatini S; Koppera S; Manaligod J; Arruda JA; Kurtzman NA
    Kidney Int; 1983 May; 23(5):705-10. PubMed ID: 6876565
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cellular transport of l-arginine determines renal medullary blood flow in control rats, but not in diabetic rats despite enhanced cellular uptake capacity.
    Persson P; Fasching A; Teerlink T; Hansell P; Palm F
    Am J Physiol Renal Physiol; 2017 Feb; 312(2):F278-F283. PubMed ID: 27927650
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of exogenous angiotensin II on renal tissue nitric oxide and intrarenal circulation in anaesthetized rats.
    Badzyńska B; Grzelec-Mojzesowicz M; Sadowski J
    Acta Physiol Scand; 2004 Nov; 182(3):313-8. PubMed ID: 15491410
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nuclear magnetic resonance spectroscopy and pattern recognition analysis of the biochemical processes associated with the progression of and recovery from nephrotoxic lesions in the rat induced by mercury(II) chloride and 2-bromoethanamine.
    Holmes E; Bonner FW; Sweatman BC; Lindon JC; Beddell CR; Rahr E; Nicholson JK
    Mol Pharmacol; 1992 Nov; 42(5):922-30. PubMed ID: 1435756
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Chemical renal medullectomy. Effect on urinary prostaglandin E2 and plasma renin in response to variations in sodium intake and in relation to blood pressure.
    Bing RF; Russell GI; Thurston H; Swales JD; Godfrey N; Lazarus Y; Jackson J
    Hypertension; 1983; 5(6):951-7. PubMed ID: 6360871
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The metabolism of 2-bromo-[1-14C]ethan-1-amine (BEA): a model compound for inducing renal papillary necrosis (RPN).
    Bach PH; Christian R; Baker J; Bridges JW
    Dev Toxicol Environ Sci; 1980; 8():533-6. PubMed ID: 7308055
    [No Abstract]   [Full Text] [Related]  

  • 56. Drug-induced renal medullary necrosis. II. Mode of calcification in the kidney.
    Shimamura T; Aogaichi M; Liu CY
    Exp Mol Pathol; 1974 Apr; 20(2):109-14. PubMed ID: 4363123
    [No Abstract]   [Full Text] [Related]  

  • 57. Papillary necrosis in experimental renal transplantation in the rat.
    Henry MA; Jablonski P; Howden BO; Rae D; Tavanlis G; Marshall VC; Tange JD
    Pathology; 1988 Jul; 20(3):279-84. PubMed ID: 3060823
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Neural-renal interactions in the hypertension induced by papillary necrosis: role of dietary salt intake.
    Dawson R; Wallace DR
    Pharmacology; 1990; 40(1):42-53. PubMed ID: 2158664
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Expression and actions of heme oxygenase in the renal medulla of rats.
    Zou AP; Billington H; Su N; Cowley AW
    Hypertension; 2000 Jan; 35(1 Pt 2):342-7. PubMed ID: 10642322
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Anemia increases the risk of renal cortical and medullary hypoxia during cardiopulmonary bypass.
    Darby PJ; Kim N; Hare GM; Tsui A; Wang Z; Harrington A; Mazer CD
    Perfusion; 2013 Nov; 28(6):504-11. PubMed ID: 23719516
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.