These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 688009)

  • 1. Synchronous responses of the primary auditory fibers to the onset of tone burst and their relation to compound action potentials.
    Ozdamar O; Dallos P
    Brain Res; 1978 Oct; 155(1):169-75. PubMed ID: 688009
    [No Abstract]   [Full Text] [Related]  

  • 2. Mass Potentials Recorded at the Round Window Enable the Detection of Low Spontaneous Rate Fibers in Gerbil Auditory Nerve.
    Batrel C; Huet A; Hasselmann F; Wang J; Desmadryl G; Nouvian R; Puel JL; Bourien J
    PLoS One; 2017; 12(1):e0169890. PubMed ID: 28085968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of hair cell lesions on responses of cochlear nerve fibers. II. Single- and two-tone intensity functions in relation to tuning curves.
    Schmiedt RA; Zwislocki JJ
    J Neurophysiol; 1980 May; 43(5):1390-405. PubMed ID: 7373369
    [No Abstract]   [Full Text] [Related]  

  • 4. A population study of cochlear nerve fibers: comparison of spatial distributions of average-rate and phase-locking measures of responses to single tones.
    Kim DO; Molnar CE
    J Neurophysiol; 1979 Jan; 42(1 Pt 1):16-30. PubMed ID: 430109
    [No Abstract]   [Full Text] [Related]  

  • 5. Comparison of auditory single fiber responses during acoustic and electric stimulation of the intact cat cochlea.
    Hartmann R; Topp G; Klinke R
    Arch Otorhinolaryngol; 1982; 234(2):187-8. PubMed ID: 7092705
    [No Abstract]   [Full Text] [Related]  

  • 6. Frequency extent of two-tone facilitation in onset units in the ventral cochlear nucleus.
    Jiang D; Palmer AR; Winter IM
    J Neurophysiol; 1996 Jan; 75(1):380-95. PubMed ID: 8822565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Boundaries of two-tone rate suppression of cochlear-nerve activity.
    Schmiedt RA
    Hear Res; 1982 Aug; 7(3):335-51. PubMed ID: 7118735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frequency thresholds of rat cochlear nerve fibers.
    Zheng CM; Ito S; Minami S; Horikawa J; Murata K
    Jpn J Physiol; 1992; 42(3):459-72. PubMed ID: 1434105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatiotemporal response patterns in populations of cochlear nerve fibers: single- and two-tone studies.
    Kim DO
    Ann N Y Acad Sci; 1983; 405():68-78. PubMed ID: 6575673
    [No Abstract]   [Full Text] [Related]  

  • 10. A physiological model for the stimulus dependence of first-spike latency of auditory-nerve fibers.
    Neubauer H; Heil P
    Brain Res; 2008 Jul; 1220():208-23. PubMed ID: 17936252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antimasking effects of the olivocochlear reflex. I. Enhancement of compound action potentials to masked tones.
    Kawase T; Liberman MC
    J Neurophysiol; 1993 Dec; 70(6):2519-32. PubMed ID: 8120596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-tone rate suppression in lizard cochlear nerve fibers, relation to receptor organ morphology.
    Holton T; Weiss TF
    Brain Res; 1978 Dec; 159(1):219-22. PubMed ID: 728795
    [No Abstract]   [Full Text] [Related]  

  • 13. Laser stimulation of single auditory nerve fibers.
    Littlefield PD; Vujanovic I; Mundi J; Matic AI; Richter CP
    Laryngoscope; 2010 Oct; 120(10):2071-82. PubMed ID: 20830761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal integration of sound pressure determines thresholds of auditory-nerve fibers.
    Heil P; Neubauer H
    J Neurosci; 2001 Sep; 21(18):7404-15. PubMed ID: 11549751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Manifestations of dynamic coding of the amplitude-modulated sounds on the level of auditory nerve fibres].
    Rimskaia-Korsakova LK; Telepnev VN; DubrovskiÄ­ NA
    Ross Fiziol Zh Im I M Sechenova; 2003 Jun; 89(6):700-14. PubMed ID: 12966708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Factors that influence rate-versus-intensity relations in single cochlear nerve fibers of the gerbil.
    Ohlemiller KK; Echteler SM; Siegel JH
    J Acoust Soc Am; 1991 Jul; 90(1):274-87. PubMed ID: 1652601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of synchrony in the activity of auditory nerve fibers by octopus cells of the mammalian cochlear nucleus.
    Oertel D; Bal R; Gardner SM; Smith PH; Joris PX
    Proc Natl Acad Sci U S A; 2000 Oct; 97(22):11773-9. PubMed ID: 11050208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Latency and amplitude compound action potential tuning curves for tonal stimuli with nontraditional envelopes.
    Henry KR; Sweet RJ; Szymanski MD
    Audiology; 1991; 30(1):33-46. PubMed ID: 2059168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaural crosstalk in the cat.
    Gibson DJ
    Hear Res; 1982 Aug; 7(3):325-33. PubMed ID: 7118734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of hair cell lesions on responses of cochlear nerve fibers. I. Lesions, tuning curves, two-tone inhibition, and responses to trapezoidal-wave patterns.
    Schmiedt RA; Zwislocki JJ; Hamernik RP
    J Neurophysiol; 1980 May; 43(5):1367-89. PubMed ID: 7373368
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.