These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
88 related articles for article (PubMed ID: 688098)
1. The metabolism of carbohydrates by extremely halophilic bacteria: the identification of lactobionic acid as a product of lactose metabolism by Halobacterium saccharovorum. Tomlinson GA; Strohm MP; Hochstein LI Can J Microbiol; 1978 Aug; 24(8):898-903. PubMed ID: 688098 [TBL] [Abstract][Full Text] [Related]
2. The metabolism of carbohydrates by extremely halophilic bacteria: identification of galactonic acid as a product of galactose metabolism. Hochstein LI; Dalton BP; Pollock G Can J Microbiol; 1976 Aug; 22(8):1191-6. PubMed ID: 963630 [TBL] [Abstract][Full Text] [Related]
3. Production of lactose-free galacto-oligosaccharide mixtures: comparison of two cellobiose dehydrogenases for the selective oxidation of lactose to lactobionic acid. Maischberger T; Nguyen TH; Sukyai P; Kittl R; Riva S; Ludwig R; Haltrich D Carbohydr Res; 2008 Aug; 343(12):2140-7. PubMed ID: 18353295 [TBL] [Abstract][Full Text] [Related]
4. Studies on acid production during carbohydrate metabolism by extremely halophilic bacteria. Tomlinson GA; Hochstein LI Can J Microbiol; 1972 Dec; 18(12):1973-6. PubMed ID: 4649745 [No Abstract] [Full Text] [Related]
5. Isolation of carbohydrate-metabolizing, extremely halophilic bacteria. Tomlinson GA; Hochstein LI Can J Microbiol; 1972 May; 18(5):698-701. PubMed ID: 4555847 [No Abstract] [Full Text] [Related]
6. Lactobionic and cellobionic acid production profiles of the resting cells of acetic acid bacteria. Kiryu T; Kiso T; Nakano H; Murakami H Biosci Biotechnol Biochem; 2015; 79(10):1712-8. PubMed ID: 25965080 [TBL] [Abstract][Full Text] [Related]
7. Halobacterium saccharovorum sp. nov., a carbohydrate-metabolizing, extremely halophilic bacterium. Tomlinson GA; Hochstein LI Can J Microbiol; 1976 Apr; 22(4):587-91. PubMed ID: 1260548 [TBL] [Abstract][Full Text] [Related]
8. The utilization of Pseudomonas taetrolens to produce lactobionic acid. Goderska K; Szwengiel A; Czarnecki Z Appl Biochem Biotechnol; 2014 Aug; 173(8):2189-97. PubMed ID: 24980748 [TBL] [Abstract][Full Text] [Related]
9. Simultaneous production of lactobionic and gluconic acid in cheese whey/glucose co-fermentation by Pseudomonas taetrolens. Alonso S; Rendueles M; Díaz M Bioresour Technol; 2015 Nov; 196():314-23. PubMed ID: 26253915 [TBL] [Abstract][Full Text] [Related]
10. Enzymatically oxidized lactose and derivatives thereof as potential protein cross-linkers. van Wijk A; Siebum A; Schoevaart R; Kieboom T Carbohydr Res; 2006 Dec; 341(18):2921-6. PubMed ID: 17056020 [TBL] [Abstract][Full Text] [Related]
11. Production of lactobionic acid from lactose using the cellobiose dehydrogenase-3-HAA-laccase system from Pycnoporus sp. SYBC-L10. Tian Q; Feng Y; Huang H; Zhang J; Yu Y; Guan Z; Cai Y; Liao X Lett Appl Microbiol; 2018 Dec; 67(6):589-597. PubMed ID: 30194841 [TBL] [Abstract][Full Text] [Related]
12. Purification and characterization of a carbohydrate: acceptor oxidoreductase from Paraconiothyrium sp. that produces lactobionic acid efficiently. Kiryu T; Nakano H; Kiso T; Murakami H Biosci Biotechnol Biochem; 2008 Mar; 72(3):833-41. PubMed ID: 18323642 [TBL] [Abstract][Full Text] [Related]
13. Identifying membrane-bound quinoprotein glucose dehydrogenase from acetic acid bacteria that produce lactobionic and cellobionic acids. Kiryu T; Kiso T; Koma D; Tanaka S; Murakami H Biosci Biotechnol Biochem; 2019 Jun; 83(6):1171-1179. PubMed ID: 30777491 [TBL] [Abstract][Full Text] [Related]
14. Optimization of lactobionic acid production by Acetobacter orientalis isolated from Caucasian fermented milk, "Caspian Sea yogurt". Kiryu T; Yamauchi K; Masuyama A; Ooe K; Kimura T; Kiso T; Nakano H; Murakami H Biosci Biotechnol Biochem; 2012; 76(2):361-3. PubMed ID: 22313756 [TBL] [Abstract][Full Text] [Related]
15. Green oxidation of renewable carbohydrates: lactobionic acid production as an example. Van Hecke W; Ludwig R; Dewulf J; Haltrich D; Van Langenhove H Commun Agric Appl Biol Sci; 2008; 73(1):9-13. PubMed ID: 18831236 [No Abstract] [Full Text] [Related]
16. Carbohydrate metabolism of lactic acid cultures. V. Lactobionate and gluconate metabolism of Streptococcus lactis UN. Vakil JR; Shahani KM J Dairy Sci; 1969 Dec; 52(12):1928-34. PubMed ID: 5377292 [No Abstract] [Full Text] [Related]
17. Halobacterial adenosine triphosphatases and the adenosine triphosphatase from Halobacterium saccharovorum. Kristjansson H; Sadler MH; Hochstein LI FEMS Microbiol Rev; 1986; 39():151-7. PubMed ID: 11542091 [TBL] [Abstract][Full Text] [Related]
18. Formation of D-arabino-hexosulose-containg oligosaccharides during borate ion-exchange chromatography of lactose. White BN; Carubelli R Carbohydr Res; 1974 Apr; 33(2):366-71. PubMed ID: 4833367 [No Abstract] [Full Text] [Related]
19. Quantification of lactobionic acid and sorbitol from enzymatic reaction of fructose and lactose by high-performance liquid chromatography. Pedruzzi I; Malvessi E; Mata VG; Silva EA; Silveira MM; Rodrigues AE J Chromatogr A; 2007 Mar; 1145(1-2):128-32. PubMed ID: 17306812 [TBL] [Abstract][Full Text] [Related]
20. THIN-LAYER AND PAPER CHROMATOGRAPHIC ANALYSES OF THE CARBOHYDRATES IN THE CELL WALL OF CHLORELLA PYRENOIDOSA 7-11-05. BECKER MJ; SHEFNER AM Nature; 1964 May; 202():803-4. PubMed ID: 14187627 [No Abstract] [Full Text] [Related] [Next] [New Search]