These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 6881546)

  • 1. A new look at the mineralized and unmineralized components of intraosseous fibers of the interdental bone of the mouse.
    Johnson RB
    Anat Rec; 1983 May; 206(1):1-9. PubMed ID: 6881546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of intraosseous fibers of the mouse periodontium: a high-voltage electron microscopic study.
    Johnson RB; Low FN
    Am J Anat; 1982 Apr; 163(4):327-35. PubMed ID: 7091017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of orthodontic forces on the morphology and diameter of Sharpey fibers of the alveolar bone of the rat.
    Martinez RH; Johnson RB
    Anat Rec; 1987 Sep; 219(1):10-20. PubMed ID: 3688456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alveolar bone Sharpey fibers of the rat incisor in normal and altered functional conditions examined by scanning electron microscopy.
    Silva MA; Merzel J
    Anat Rec A Discov Mol Cell Evol Biol; 2004 Aug; 279(2):792-7. PubMed ID: 15278950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The distribution of 3H-proline in alveolar bone of the mouse as seen by radioautography.
    Johnson RB
    Anat Rec; 1986 Nov; 216(3):339-48. PubMed ID: 3789416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of tooth function on adjacent alveolar bone and Sharpey's fibers of the rat periodontium.
    Short E; Johnson RB
    Anat Rec; 1990 Aug; 227(4):391-6. PubMed ID: 2393093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A classification of Sharpey's fibers within the alveolar bone of the mouse: a high-voltage electron microscope study.
    Johnson RB
    Anat Rec; 1987 Apr; 217(4):339-47. PubMed ID: 3592259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The relationship of proteoglycans to developing transalveolar fibres in the alveolar bone of the mouse.
    Johnson RB; Low FN
    Anat Anz; 1983; 153(2):107-18. PubMed ID: 6859541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasonic microdissection of the mouse mandible: exposure of the vasculature of alveolar bone and myelinated axons of the pulp.
    Johnson RB; Highison GJ
    Anat Rec; 1985 Jan; 211(1):96-101. PubMed ID: 3985384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Healing of extraction sockets and surgically produced - augmented and non-augmented - defects in the alveolar ridge. An experimental study in the dog.
    Cardaropoli G; Araújo M; Hayacibara R; Sukekava F; Lindhe J
    J Clin Periodontol; 2005 May; 32(5):435-40. PubMed ID: 15842256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Caiman periodontium as an intermediate between basal vertebrate ankylosis-type attachment and mammalian "true" periodontium.
    McIntosh JE; Anderton X; Flores-De-Jacoby L; Carlson DS; Shuler CF; Diekwisch TG
    Microsc Res Tech; 2002 Dec; 59(5):449-59. PubMed ID: 12430171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scanning electron microscopic analysis of the mineralization of type I collagen via a polymer-induced liquid-precursor (PILP) process.
    Olszta MJ; Douglas EP; Gower LB
    Calcif Tissue Int; 2003 May; 72(5):583-91. PubMed ID: 12616327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphological characteristics of the depository surface of alveolar bone of diabetic mice.
    Johnson RB
    J Periodontal Res; 1992 Jan; 27(1):40-7. PubMed ID: 1531509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new technique for exposure of osteocytes and transalveolar fibres of the interdental septum in the mouse for scanning electron microscopy.
    Johnson RB; Highison GJ
    Arch Oral Biol; 1983; 28(3):273-7. PubMed ID: 6305319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transalveolar fibers of the mouse periodontium: a scanning electron microscopic study.
    Johnson RB; Low FN
    Scan Electron Microsc; 1983; (Pt 2):643-8. PubMed ID: 6635566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peri-implant bone organization under immediate loading conditions: collagen fiber orientation and mineral density analyses in the minipig model.
    Traini T; Neugebauer J; Thams U; Zöller JE; Caputi S; Piattelli A
    Clin Implant Dent Relat Res; 2009 Mar; 11(1):41-51. PubMed ID: 18657155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of interimplant distance on bone microstructure: a histomorphometric study in dogs.
    Traini T; Novaes AB; Papalexiou V; Piattelli A
    Clin Implant Dent Relat Res; 2008 Mar; 10(1):1-10. PubMed ID: 18205845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osteoclast distribution within the rat interdental septum coincident to experimental tooth movement using light forces.
    Johnson RB
    Anat Rec (Hoboken); 2007 Jan; 290(1):74-82. PubMed ID: 17441200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduced osteoblastic population and defective mineralization in osteopetrotic (op/op) mice.
    Sakagami N; Amizuka N; Li M; Takeuchi K; Hoshino M; Nakamura M; Nozawa-Inoue K; Udagawa N; Maeda T
    Micron; 2005; 36(7-8):688-95. PubMed ID: 16182547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hard tissue alterations after socket preservation: an experimental study in the beagle dog.
    Fickl S; Zuhr O; Wachtel H; Bolz W; Huerzeler MB
    Clin Oral Implants Res; 2008 Nov; 19(11):1111-8. PubMed ID: 18983313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.