BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 6882398)

  • 1. Substrate utilization by rat stomach in vivo. Arteriovenous differences for glucose, lactate, ketone bodies, fatty acids and glycerol under control and acid-secreting conditions.
    Anderson NG; Hanson PJ
    Biochem J; 1983 Jun; 212(3):875-9. PubMed ID: 6882398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rates of utilization and fates of glucose, glutamine, pyruvate, fatty acids and ketone bodies by mouse macrophages.
    Newsholme P; Gordon S; Newsholme EA
    Biochem J; 1987 Mar; 242(3):631-6. PubMed ID: 3593269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ketone body, glucose, lactic acid, and amino acid utilization by tumors in vivo in fasted rats.
    Sauer LA; Dauchy RT
    Cancer Res; 1983 Aug; 43(8):3497-503. PubMed ID: 6861121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arteriovenous differences for amino acids across control and acid-secreting rat stomach in vivo.
    Anderson NG; Hanson PJ
    Biochem J; 1983 Feb; 210(2):451-5. PubMed ID: 6860304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of the sympathetic nerve action on carbohydrate and ketone body metabolism by fatty acids, glucagon und insulin in perfused rat liver.
    Küster J; Beuers U; Jungermann K
    Biol Chem Hoppe Seyler; 1989 Sep; 370(9):1035-44. PubMed ID: 2692615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The rate of cerebral utilization of glucose, ketone bodies, and oxygen: a comparative in vivo study of infant and adult rats.
    Dahlquist G; Persson B
    Pediatr Res; 1976 Nov; 10(11):910-7. PubMed ID: 980550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Importance of the modulation of glycolysis in the control of lactate metabolism by fatty acids in isolated hepatocytes from fed rats.
    Morand C; Besson C; Demigne C; Remesy C
    Arch Biochem Biophys; 1994 Mar; 309(2):254-60. PubMed ID: 8135535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of glucose and ketone-body metabolism in brain of anaesthetized rats.
    Ruderman NB; Ross PS; Berger M; Goodman MN
    Biochem J; 1974 Jan; 138(1):1-10. PubMed ID: 4275704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activities of enzymes of fat and ketone-body metabolism and effects of starvation on blood concentrations of glucose and fat fuels in teleost and elasmobranch fish.
    Zammit VA; Newsholme EA
    Biochem J; 1979 Nov; 184(2):313-22. PubMed ID: 534530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the isolated perfused rat hindquarter for the study of muscle metabolism.
    Ruderman NB; Houghton CR; Hems R
    Biochem J; 1971 Sep; 124(3):639-51. PubMed ID: 5135248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The fuel of respiration of rat kidney cortex.
    Weidemann MJ; Krebs HA
    Biochem J; 1969 Apr; 112(2):149-66. PubMed ID: 5805283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Competition between fatty acids and carbohydrate or ketone bodies as metabolic fuels for the isolated perfused heart.
    Forsey RG; Reid K; Brosnan JT
    Can J Physiol Pharmacol; 1987 Mar; 65(3):401-6. PubMed ID: 3107785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of early chronic phenobarbital treatment on cerebral arteriovenous differences of glucose and ketone bodies in the developing rat.
    Schroeder H; Bomont L; Nehlig A
    Int J Dev Neurosci; 1991; 9(5):453-61. PubMed ID: 1781304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolism and gastric acid secretion. Substrate-dependency of aminopyrine accumulation in isolated rat parietal cells.
    Shaw GP; Anderson NG; Hanson PJ
    Biochem J; 1985 Apr; 227(1):223-9. PubMed ID: 3888195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in the concentrations of hepatic metabolites on administration of dihydroxyacetone or glycerol to starved rats and their relationship to the control of ketogenesis.
    Williamson DH; Veloso D; Ellington EV; Krebs HA
    Biochem J; 1969 Sep; 114(3):575-84. PubMed ID: 4309529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence that the flux control coefficient of the respiratory chain is high during gluconeogenesis from lactate in hepatocytes from starved rats. Implications for the hormonal control of gluconeogenesis and action of hypoglycaemic agents.
    Pryor HJ; Smyth JE; Quinlan PT; Halestrap AP
    Biochem J; 1987 Oct; 247(2):449-57. PubMed ID: 3426547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hepatic metabolism in patients with alcoholic cirrhosis.
    Reichle FA; Owen OE; Golsorkhi M; Kreulen T
    Surgery; 1978 Jul; 84(1):33-6. PubMed ID: 663824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of metformin compared to the effects of phenformin on the lactate production and the metabolism of isolated parenchymal rat liver cell.
    Jalling O; Olsen C
    Acta Pharmacol Toxicol (Copenh); 1984 May; 54(5):327-32. PubMed ID: 6431751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On gluconeogenesis of human liver. Accelerated hepatic glucose formation induced by increased precursor supply.
    Dietze G; Wicklmayr M; Hepp KD; Bogner W; Mehnert H; Czempiel H; Henftling HG
    Diabetologia; 1976 Dec; 12(6):555-61. PubMed ID: 1001845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cerebral utilization of glucose, ketone bodies and oxygen in starving infant rats and the effect of intrauterine growth retardation.
    Dahlquist G
    Acta Physiol Scand; 1976 Oct; 98(2):237-47. PubMed ID: 983734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.