These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
83 related articles for article (PubMed ID: 6882446)
1. One hundred fold increased activity of Aeromonas aminopeptidase by sequential substitutions with Ni(II) or Cu(II) followed by zinc. Prescott JM; Wagner FW; Holmquist B; Vallee BL Biochem Biophys Res Commun; 1983 Jul; 114(2):646-52. PubMed ID: 6882446 [TBL] [Abstract][Full Text] [Related]
2. Modified activity of Aeromonas aminopeptidase: metal ion substitutions and role of substrates. Bayliss ME; Prescott JM Biochemistry; 1986 Dec; 25(24):8113-7. PubMed ID: 3801458 [TBL] [Abstract][Full Text] [Related]
3. Structurally distinct active sites in the copper(II)-substituted aminopeptidases from Aeromonas proteolytica and Escherichia coli. Bennett B; Antholine WE; D'souza VM; Chen G; Ustinyuk L; Holz RC J Am Chem Soc; 2002 Nov; 124(44):13025-34. PubMed ID: 12405829 [TBL] [Abstract][Full Text] [Related]
4. Preparation and reconstitution with divalent metal ions of class I and class II Clostridium histolyticum apocollagenases. Angleton EL; Van Wart HE Biochemistry; 1988 Sep; 27(19):7406-12. PubMed ID: 2849991 [TBL] [Abstract][Full Text] [Related]
6. A transition-state-analog inhibitor influences zinc-binding by Aeromonas aminopeptidase. Baker JO; Prescott JM Biochem Biophys Res Commun; 1985 Aug; 130(3):1154-60. PubMed ID: 4026862 [TBL] [Abstract][Full Text] [Related]
7. Aeromonas aminopeptidase: purification and some general properties. Prescott JM; Wilkes SH Arch Biochem Biophys; 1966 Nov; 117(2):328-36. PubMed ID: 4961737 [No Abstract] [Full Text] [Related]
8. Preparation by direct metal exchange and kinetic study of active site metal substituted class I and class II Clostridium histolyticum collagenases. Angleton EL; Van Wart HE Biochemistry; 1988 Sep; 27(19):7413-8. PubMed ID: 2849992 [TBL] [Abstract][Full Text] [Related]
13. Spectroscopic and thermodynamic characterization of the E151D and E151A altered leucine aminopeptidases from Aeromonas proteolytica. Bzymek KP; Swierczek SI; Bennett B; Holz RC Inorg Chem; 2005 Nov; 44(23):8574-80. PubMed ID: 16270998 [TBL] [Abstract][Full Text] [Related]
14. Purification and metal ion activation of an aminopeptidase (aminopeptidase II) from Bacillus stearothermophilus. Myrin PA; Hofsten BV Biochim Biophys Acta; 1974 May; 350(1):13-25. PubMed ID: 4407342 [No Abstract] [Full Text] [Related]
15. Effect of metal ions on the fluorescence of leucine aminopeptidase and its dansyl-peptide substrates. Lin WY; Van Wart HE J Inorg Biochem; 1988 Jan; 32(1):21-38. PubMed ID: 3346660 [TBL] [Abstract][Full Text] [Related]
16. Peptide hydrolysis by the binuclear zinc enzyme aminopeptidase from Aeromonas proteolytica: a density functional theory study. Chen SL; Marino T; Fang WH; Russo N; Himo F J Phys Chem B; 2008 Feb; 112(8):2494-500. PubMed ID: 18247603 [TBL] [Abstract][Full Text] [Related]
17. X-ray crystallographic characterization of the Co(II)-substituted Tris-bound form of the aminopeptidase from Aeromonas proteolytica. Munih P; Moulin A; Stamper CC; Bennett B; Ringe D; Petsko GA; Holz RC J Inorg Biochem; 2007 Aug; 101(8):1099-107. PubMed ID: 17574677 [TBL] [Abstract][Full Text] [Related]
18. Heavy metal effects on beta-glucosidase activity influenced by pH and buffer systems. Geiger G; Furrer G; Funk F; Brandl H; Schulin R J Enzyme Inhib; 1999; 14(5):365-79. PubMed ID: 10488247 [TBL] [Abstract][Full Text] [Related]
19. Superoxide dismutase. Reversible removal of manganese and its substitution by cobalt, nickel or zinc. Ose DE; Fridovich I J Biol Chem; 1976 Feb; 251(4):1217-8. PubMed ID: 765340 [TBL] [Abstract][Full Text] [Related]
20. Intramolecular chaperone and inhibitor activities of a propeptide from a bacterial zinc aminopeptidase. Nirasawa S; Nakajima Y; Zhang ZZ; Yoshida M; Hayashi K Biochem J; 1999 Jul; 341 ( Pt 1)(Pt 1):25-31. PubMed ID: 10377241 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]