BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 6882787)

  • 1. Conversion of sterols and triterpenes by mycobacteria. I Formation of progesterone and 1-dehydroprogesterone from Mycobacterium aurum, strain A+.
    Prome D; Lacave C; Monsarrat B; David H; Prome JC
    Biochim Biophys Acta; 1983 Aug; 753(1):60-4. PubMed ID: 6882787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of progesterone and 1-dehydroprogesterone from cholesterol in fermentation cultures of Mycobacterium aurum.
    Hörhold C; Böhme KH
    J Steroid Biochem; 1990 Jun; 36(1-2):181-3. PubMed ID: 2362446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conversion of sterols and triterpenes by mycobacteria. II. Transformation of 7-oxygenated sterols into androstane derivatives via a 7-deoxygenation.
    Prome D; Clave C; Escoffier B; Prome JC
    Biochim Biophys Acta; 1987 Oct; 921(3):559-66. PubMed ID: 3663695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving the production of 22-hydroxy-23,24-bisnorchol-4-ene-3-one from sterols in Mycobacterium neoaurum by increasing cell permeability and modifying multiple genes.
    Xiong LB; Liu HH; Xu LQ; Sun WJ; Wang FQ; Wei DZ
    Microb Cell Fact; 2017 May; 16(1):89. PubMed ID: 28532497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Role of fadD19 and echA19 in Sterol Side Chain Degradation by Mycobacterium smegmatis.
    Wrońska N; Brzostek A; Szewczyk R; Soboń A; Dziadek J; Lisowska K
    Molecules; 2016 May; 21(5):. PubMed ID: 27164074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel sterol transformations promoted by Saccharomyces cerevisiae strain GL7: evidence for 9 beta, 19-cyclopropyl to 9(11)-isomerization and for 14-demethylation to 8(14)-sterols.
    Venkatramesh M; Nes WD
    Arch Biochem Biophys; 1995 Dec; 324(1):189-99. PubMed ID: 7503554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Conversion of androstenedione and androstadienedione by sterol-degrading bacteria].
    Voĭshvillo NE; Andriushina VA; Savinova TS; Stytsenko TS
    Prikl Biokhim Mikrobiol; 2004; 40(5):536-43. PubMed ID: 15553785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Degradation of steroids. XVI. Microbial side chain degradation of structurally modified sterols].
    Böhme KH; Hörhold C
    Z Allg Mikrobiol; 1980; 20(2):85-93. PubMed ID: 7376692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial degradation of sterols.
    Marsheck WJ; Kraychy S; Muir RD
    Appl Microbiol; 1972 Jan; 23(1):72-7. PubMed ID: 5059623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unraveling and engineering the production of 23,24-bisnorcholenic steroids in sterol metabolism.
    Xu LQ; Liu YJ; Yao K; Liu HH; Tao XY; Wang FQ; Wei DZ
    Sci Rep; 2016 Feb; 6():21928. PubMed ID: 26898409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New product identification in the sterol metabolism by an industrial strain Mycobacterium neoaurum NRRL B-3805.
    Li X; Chen X; Wang Y; Yao P; Zhang R; Feng J; Wu Q; Zhu D; Ma Y
    Steroids; 2018 Apr; 132():40-45. PubMed ID: 29427574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation of methyl 3-hydroxy-9-oxo-9,10-seco-23,24-dinor-1,3,5(10)-cholatrienoate from a sterol bioconversion.
    Knight JC; Wovcha MG
    Steroids; 1985; 46(2-3):789-96. PubMed ID: 3837416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced conversion of sterols to steroid synthons by augmenting the peptidoglycan synthesis gene pbpB in Mycobacterium neoaurum.
    Sun WJ; Liu YJ; Liu HH; Ma JD; Ren YH; Wang FQ; Wei DZ
    J Basic Microbiol; 2019 Sep; 59(9):924-935. PubMed ID: 31347189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Preparation of androsta-1,4-diene-3,17-dione from sterols using Mycobacterium neoaurum VKPM As-1656 strain].
    Molchanova MA; Andriushina VA; Savinova TS; Stytsenko TS; Rodina NV; Voĭshvillo NE
    Bioorg Khim; 2007; 33(3):379-84. PubMed ID: 17682396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of cholesterol-related sterols during Eimeria bovis macromeront formation and impact of selected oxysterols on parasite development.
    Taubert A; Silva LMR; Velásquez ZD; Larrazabal C; Lütjohann D; Hermosilla C
    Mol Biochem Parasitol; 2018 Jul; 223():1-12. PubMed ID: 29909067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Identification of a new steroid transforming strain of mycobacteria as Mycobacterium neoaurum].
    Voĭshvillo NE; Andriushina VA; Savinova TS; Stytsenko TS; Vasil'eva NA; Turova TP; Kolganova TV; Skriabin KG
    Prikl Biokhim Mikrobiol; 2003; 39(2):173-9. PubMed ID: 12722650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of regulatory oxysterols: 26-hydroxylation of cholesterol by ovarian mitochondria.
    Rennert H; Fischer RT; Alvarez JG; Trzaskos JM; Strauss JF
    Endocrinology; 1990 Aug; 127(2):738-46. PubMed ID: 2373053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sterol side-chain cleavage with immobilized Mycobacterium cells in water-immiscible organic solvents.
    Dias AC; Cabral JM; Pinheiro HM
    Enzyme Microb Technol; 1994 Aug; 16(8):708-14. PubMed ID: 7765079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic Adaptation of Mycobacterium neoaurum ATCC 25795 in the Catabolism of Sterols for Producing Important Steroid Intermediates.
    Liu M; Xiong LB; Tao X; Liu QH; Wang FQ; Wei DZ
    J Agric Food Chem; 2018 Nov; 66(45):12141-12150. PubMed ID: 30362748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overexpression of cytochrome p450 125 in Mycobacterium: a rational strategy in the promotion of phytosterol biotransformation.
    Su L; Shen Y; Xia M; Shang Z; Xu S; An X; Wang M
    J Ind Microbiol Biotechnol; 2018 Oct; 45(10):857-867. PubMed ID: 30073539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.