BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 6883090)

  • 21. [Dynamics of the neuronal activity of midbrain reticular nuclei in the sleep-wakefulness cycle].
    Oniani TN; Gvetadze LB; Mandzhavidze ShD
    Neirofiziologiia; 1984; 16(5):678-90. PubMed ID: 6514063
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reduced sleep spindle activity in schizophrenia patients.
    Ferrarelli F; Huber R; Peterson MJ; Massimini M; Murphy M; Riedner BA; Watson A; Bria P; Tononi G
    Am J Psychiatry; 2007 Mar; 164(3):483-92. PubMed ID: 17329474
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [The mechanisms behind the generation of the slow oscillations found in EEG recordings during sleep].
    Núñez-Molina A; Amzica F
    Rev Neurol; 2004 Oct 1-15; 39(7):628-33. PubMed ID: 15490348
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spatiotemporal analysis of local field potentials and unit discharges in cat cerebral cortex during natural wake and sleep states.
    Destexhe A; Contreras D; Steriade M
    J Neurosci; 1999 Jun; 19(11):4595-608. PubMed ID: 10341257
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Counterpointing the functional role of the forebrain and of the brainstem in the control of the sleep-waking system.
    Villablanca JR
    J Sleep Res; 2004 Sep; 13(3):179-208. PubMed ID: 15339255
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Neocortical electrical activity of cats with premesencephalic brain stem section under chronic experimental conditions].
    Naneĭshvili TL; Bakuradze AN; Noselidze AG; Aragveli RI; Dashniani MG
    Fiziol Zh SSSR Im I M Sechenova; 1975 Sep; 61(9):1273-80. PubMed ID: 1213189
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Increased gamma- and decreased delta-oscillations in a mouse deficient for a potassium channel expressed in fast-spiking interneurons.
    Joho RH; Ho CS; Marks GA
    J Neurophysiol; 1999 Oct; 82(4):1855-64. PubMed ID: 10515974
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neurotoxic lesion of the mesencephalic reticular formation and/or the posterior hypothalamus does not alter waking in the cat.
    Denoyer M; Sallanon M; Buda C; Kitahama K; Jouvet M
    Brain Res; 1991 Jan; 539(2):287-303. PubMed ID: 1675907
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Relative power contributions of unit discharges simultaneously recorded in the mesencephalic reticular formation.
    Kodama T; Honda Y; Nakao M; Sato S; Yamamoto M
    Psychiatry Clin Neurosci; 2000 Jun; 54(3):265-7. PubMed ID: 11186070
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Brain stem reticular formation and activation of the EEG.
    Moruzzi G; Magoun HW
    Electroencephalogr Clin Neurophysiol; 1949 Nov; 1(4):455-73. PubMed ID: 18421835
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A quantitative study of electroencephalography, eye movements and neck electromyography characterizing the sleep-wake cycle of the guinea-pig.
    Escudero M; Vidal PP
    Eur J Neurosci; 1996 Mar; 8(3):572-80. PubMed ID: 8963449
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multiple unit activity of dorsal cochlear nucleus and midbrain reticular formation during paradoxical phase of sleep. IV, A supplementary note.
    Mori K; Mitani H; Fujita M; Winters WD
    Electroencephalogr Clin Neurophysiol; 1972 Jul; 33(1):104-6. PubMed ID: 4113265
    [No Abstract]   [Full Text] [Related]  

  • 33. Effects of basal forebrain stimulation on the waking discharge of neurons in the midbrain reticular formation of cats.
    Szymusiak R; McGinty D
    Brain Res; 1989 Oct; 498(2):355-9. PubMed ID: 2790488
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Basal forebrain mechanisms for internal inhibition and sleep.
    Clemente CD; Sterman MB
    Res Publ Assoc Res Nerv Ment Dis; 1967; 45():127-47. PubMed ID: 6083189
    [No Abstract]   [Full Text] [Related]  

  • 35. Excitatory-inhibitory processes in parietal association neurons during reticular activation and sleep-waking cycle.
    Steriade M; Kitsikis A; Oakson G
    Sleep; 1979; 1(4):339-55. PubMed ID: 504875
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The influence of high-frequency stimulation of the midbrain reticular formation on the interaction of neurons of the neocortex.
    Pavlova IV
    Neurosci Behav Physiol; 1993; 23(2):152-9. PubMed ID: 8487941
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Different Effects of Sleep Deprivation and Torpor on EEG Slow-Wave Characteristics in Djungarian Hamsters.
    Vyazovskiy VV; Palchykova S; Achermann P; Tobler I; Deboer T
    Cereb Cortex; 2017 Feb; 27(2):950-961. PubMed ID: 28168294
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Effect of cyclopropane on the reticular formation of the midbrain and the cerebral cortex].
    Plekhotkina SI; Golovchinskiĭ VB
    Biull Eksp Biol Med; 1971 Aug; 72(8):58-62. PubMed ID: 5112530
    [No Abstract]   [Full Text] [Related]  

  • 39. Slow-wave oscillations in a corticothalamic model of sleep and wake.
    Zhao X; Kim JW; Robinson PA
    J Theor Biol; 2015 Apr; 370():93-102. PubMed ID: 25659479
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [The cross-correlation relations of the electrical activity of the cortical structures at different levels of the activation of the midbrain reticular formation in the rabbit].
    Vorob'ev NA; Bakharev BV
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1991; 41(4):769-80. PubMed ID: 1660657
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.