These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 6883090)

  • 41. Effect of crossed-perfusion of the midbrain reticular formation upon sleep.
    Drucker-Colin RP; Rojas-Ramirez JA; Vera-Trueba J; Monroy-Ayala G; Hernandez-Peon R
    Brain Res; 1970 Oct; 23(2):269-73. PubMed ID: 5476770
    [No Abstract]   [Full Text] [Related]  

  • 42. Human hippocampal formation EEG desynchronizes during attentiveness and movement.
    Halgren E; Babb TL; Crandall PH
    Electroencephalogr Clin Neurophysiol; 1978 Jun; 44(6):778-81. PubMed ID: 78806
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Physiology, pharmacology, and topography of cholinergic neocortical oscillations in vitro.
    Lukatch HS; MacIver MB
    J Neurophysiol; 1997 May; 77(5):2427-45. PubMed ID: 9163368
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Continuous spike-waves during slow-wave sleep in a mouse model of focal cortical dysplasia.
    Sun QQ; Zhou C; Yang W; Petrus D
    Epilepsia; 2016 Oct; 57(10):1581-1593. PubMed ID: 27527919
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Slow-wave oscillations of the multi-unit activity average frequency in the human brain during drowsiness and sleep.
    Moiseeva NI; Aleksanian ZA
    Electroencephalogr Clin Neurophysiol; 1986 May; 63(5):431-7. PubMed ID: 2420559
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Electrophysiological correlates of sleep delta waves.
    Amzica F; Steriade M
    Electroencephalogr Clin Neurophysiol; 1998 Aug; 107(2):69-83. PubMed ID: 9751278
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Noradrenergic neurons of the locus coeruleus are phase locked to cortical up-down states during sleep.
    Eschenko O; Magri C; Panzeri S; Sara SJ
    Cereb Cortex; 2012 Feb; 22(2):426-35. PubMed ID: 21670101
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Spindle activity phase-locked to sleep slow oscillations.
    Klinzing JG; Mölle M; Weber F; Supp G; Hipp JF; Engel AK; Born J
    Neuroimage; 2016 Jul; 134():607-616. PubMed ID: 27103135
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Intracortical and corticothalamic coherency of fast spontaneous oscillations.
    Steriade M; Amzica F
    Proc Natl Acad Sci U S A; 1996 Mar; 93(6):2533-8. PubMed ID: 8637909
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Neurohumoral mechanisms regulating electrocortical synchronization states].
    Lozoya X; Velasco M; Estrada F; Velázquez X
    Arch Invest Med (Mex); 1972; 3(2):91-6. PubMed ID: 4403924
    [No Abstract]   [Full Text] [Related]  

  • 51. [Cortical control of midbrain reticular neurons in cats].
    Naito H
    Seishin Shinkeigaku Zasshi; 1966 Aug; 68(8):943-55. PubMed ID: 6008901
    [No Abstract]   [Full Text] [Related]  

  • 52. Stochastic properties of spontaneous unit discharges in somatosensory cortex and mesencephalic reticular formation during sleep-waking states.
    Yamamoto M; Nakahama H
    J Neurophysiol; 1983 May; 49(5):1182-98. PubMed ID: 6864245
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sleep waves in a large-scale corticothalamic model constrained by activities intrinsic to neocortical networks and single thalamic neurons.
    Dervinis M; Crunelli V
    CNS Neurosci Ther; 2024 Mar; 30(3):e14206. PubMed ID: 37072918
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Time-course analyses of quantitated EEG amplitude relationships between cerebral structures in cats and rabbits.
    Goldstein L; Gardocki JP; Mundschenk DL; O'Brien G
    Electroencephalogr Clin Neurophysiol; 1968 Mar; 24(3):282-3. PubMed ID: 4170227
    [No Abstract]   [Full Text] [Related]  

  • 55. [Electrophysiologic correlates of interaction between desynchronized and synchronized brain structures during sleep and wakefulness].
    Romanov DA
    Fiziol Zh SSSR Im I M Sechenova; 1981 Mar; 67(3):364-70. PubMed ID: 7250414
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Analysis of conditioned stimuli during excitation of the midbrain reticular formation].
    Kratin IuG; Andreeva VN; Chalisova NI
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1972; 22(2):300-11. PubMed ID: 5048163
    [No Abstract]   [Full Text] [Related]  

  • 57. 7-12 Hz cortical oscillations: behavioral context and dynamics of prefrontal neuronal ensembles.
    Sakata S; Yamamori T; Sakurai Y
    Neuroscience; 2005; 134(4):1099-111. PubMed ID: 16019153
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Phase relationships between the rhythmic activity of cortical structures of the rabbit at different midbrain reticular formation stimulation frequencies.
    Vorob'ev NA; Bakharev BV; Pavlik VD; Zhadin MN
    Neurosci Behav Physiol; 1996; 26(1):55-61. PubMed ID: 8801469
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Spectral characteristics of the bioelectrical activity of the cerebral cortex upon electric stimulation of subcortical structures].
    Ianson ZA; Markin VP
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1976; 26(3):619-25. PubMed ID: 941511
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Neuronal mechanisms of hypothalamo-reticular effects on cerebral cortex activity].
    Baklavadzhian OG; Eganova VS
    Usp Fiziol Nauk; 1982; 13(2):3-30. PubMed ID: 7046277
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.