These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 6883125)

  • 1. Developmental and neurochemical specificity of neuronal deficits produced by electrical impulse blockade in dissociated spinal cord cultures.
    Brenneman DE; Neale EA; Habig WH; Bowers LM; Nelson PG
    Brain Res; 1983 Jul; 285(1):13-27. PubMed ID: 6883125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction between trophic action and electrical activity in spinal cord cultures.
    Brenneman DE; Fitzgerald S; Nelson PG
    Brain Res; 1984 Aug; 317(2):211-7. PubMed ID: 6478248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuronal survival during electrical blockade is increased by 8-bromo cyclic adenosine 3',5' monophosphate.
    Brenneman DE; Fitzgerald S; Litzinger MJ
    J Pharmacol Exp Ther; 1985 May; 233(2):402-8. PubMed ID: 2987479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of electrical activity and trophic factors during cholinergic development in dissociated cultures.
    Brenneman DE
    Can J Physiol Pharmacol; 1986 Mar; 64(3):356-62. PubMed ID: 3708442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spontaneous electrical activity regulates vasoactive intestinal peptide expression in dissociated spinal cord cell cultures.
    Agoston DV; Eiden LE; Brenneman DE; Gozes I
    Brain Res Mol Brain Res; 1991 Jun; 10(3):235-40. PubMed ID: 1715967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium-dependent regulation of the enkephalin phenotype by neuronal activity during early ontogeny.
    Agoston DV; Eiden LE; Brenneman DE
    J Neurosci Res; 1991 Jan; 28(1):140-8. PubMed ID: 1645773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vasoactive intestinal peptide and electrical activity influence neuronal survival.
    Brenneman DE; Eiden LE
    Proc Natl Acad Sci U S A; 1986 Feb; 83(4):1159-62. PubMed ID: 3456568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neurotrophic action of VIP on spinal cord cultures.
    Brenneman DE; Eiden LE; Siegel RE
    Peptides; 1985; 6 Suppl 2():35-9. PubMed ID: 4080617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of the GABAergic phenotype in murine spinal cord-dorsal root ganglion cultures.
    Caserta MT; Barker JL
    Int J Dev Neurosci; 1994 Dec; 12(8):753-65. PubMed ID: 7747602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrical development in spinal cord cell culture.
    Jackson MB; Lecar H; Brenneman DE; Fitzgerald S; Nelson PG
    J Neurosci; 1982 Aug; 2(8):1052-61. PubMed ID: 7050310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuronal maturation in mammalian cell culture is dependent on spontaneous electrical activity.
    Bergey GK; Fitzgerald SC; Schrier BK; Nelson PG
    Brain Res; 1981 Feb; 207(1):49-58. PubMed ID: 6258736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of chronic suppression of bioelectric activity on the development of sensory ganglion evoked responses in spinal cord explants.
    Baker RE; Corner MA; Habets AM
    J Neurosci; 1984 May; 4(5):1187-92. PubMed ID: 6726324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural specificity of peptides influencing neuronal survival during development.
    Brenneman DE; Foster GA
    Peptides; 1987; 8(4):687-94. PubMed ID: 3628084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [3H]-tetrodotoxin binding in neuronal and non-neuronal spinal cord cultures.
    Litzinger MJ; Lombet A; Brenneman DE; Lazdunski M
    Biochem Biophys Res Commun; 1986 Aug; 138(3):1250-6. PubMed ID: 2428363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human spinal cord neurons in dissociated monolayer cultures: morphological, biochemical, and electrophysiological properties.
    Kato AC; Touzeau G; Bertrand D; Bader CR
    J Neurosci; 1985 Oct; 5(10):2750-61. PubMed ID: 2413186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of discrete sub-populations of transmitter-identified neurones after inhibition of electrical activity in cultures of mouse spinal cord.
    Foster GA; Eiden LE; Brenneman DE
    Cell Tissue Res; 1989 Jun; 256(3):543-52. PubMed ID: 2472892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. N-methyl-D-aspartate receptors influence neuronal survival in developing spinal cord cultures.
    Brenneman DE; Forsythe ID; Nicol T; Nelson PG
    Brain Res Dev Brain Res; 1990 Jan; 51(1):63-8. PubMed ID: 1967564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tetanus toxin in dissociated spinal cord cultures: long-term characterization of form and action.
    Habig WH; Bigalke H; Bergey GK; Neale EA; Hardegree MC; Nelson PG
    J Neurochem; 1986 Sep; 47(3):930-7. PubMed ID: 3734804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Central neuronal responsiveness to sensory ganglion stimulation is correlated with the incidence of spontaneous bioelectric activity in developing spinal cord cultures.
    Corner MA; Baker RE
    Pflugers Arch; 1987 Nov; 410(4-5):563-5. PubMed ID: 3432056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium-dependent action potentials in mouse spinal cord neurons in cell culture.
    Heyer EJ; MacDonald RL; Bergey GK; Nelson PG
    Brain Res; 1981 Sep; 220(2):408-15. PubMed ID: 7284766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.