These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 6883226)
41. Toxicity of VectoLex (Bacillus sphaericus) products to selected Australian mosquito and nontarget species. Brown ID; Watson TM; Carter J; Purdie DM; Kay BH J Econ Entomol; 2004 Feb; 97(1):51-8. PubMed ID: 14998127 [TBL] [Abstract][Full Text] [Related]
42. Comparative studies of the mosquito-larval toxin of Bacillus sphaericus SSII-1 and 1593. Myers P; Yousten AA; Davidson EW Can J Microbiol; 1979 Nov; 25(11):1227-31. PubMed ID: 540250 [TBL] [Abstract][Full Text] [Related]
43. Compatibility of Bacillus thuringiensis var. Israelensis and Bacillus sphaericus with the fungal pathogen Lagenidium giganteum (Oomycetes: Lagenidiales). Orduz S; Axtell RC J Am Mosq Control Assoc; 1991 Jun; 7(2):188-93. PubMed ID: 1895077 [TBL] [Abstract][Full Text] [Related]
44. [Evaluation of the efficacy of Bacillus sphaericus Neid 1904 applied to previously cleaned gutters for Culex quinquefasciatus Say 1823 control in Abidjan (Côte d'Ivoire)]. Zeze GD; Doannio JM; Dossou-Yoyo J; Rivière F; Chauvancy G Bull Soc Pathol Exot; 1996; 89(3):220-6. PubMed ID: 8998420 [TBL] [Abstract][Full Text] [Related]
45. Operational Evaluation Of Vectomax® WSP (Bacillus thuringiensis Subsp. israelensis+Bacillus sphaericus) Against Larval Culex pipiens in Septic Tanks (1). Cetin H; Oz E; Yanikoglu A; Cilek JE J Am Mosq Control Assoc; 2015 Jun; 31(2):193-5. PubMed ID: 26181699 [TBL] [Abstract][Full Text] [Related]
46. [Campaign against Culex quinquefasciatus using Bacillus sphaericus: results of a pilot project in a large urban area of equatorial Africa]. Hougard JM; Mbentengam R; Lochouarn L; Escaffre H; Darriet F; Barbazan P; Quillévéré D Bull World Health Organ; 1993; 71(3-4):367-75. PubMed ID: 8324856 [TBL] [Abstract][Full Text] [Related]
47. Comparative bioassays of Tolypocladium cylindrosporum Gams (Californian strain) against four species of mosquitoes in Malaysia. Serit MA; Yap HH Southeast Asian J Trop Med Public Health; 1984 Sep; 15(3):331-6. PubMed ID: 6151744 [TBL] [Abstract][Full Text] [Related]
48. Laboratory and field plot bioassay of Bacillus sphaericus against Arkansas mosquito species. Groves RL; Meisch MV J Am Mosq Control Assoc; 1996 Jun; 12(2 Pt 1):220-4. PubMed ID: 8827596 [TBL] [Abstract][Full Text] [Related]
49. Production of Bacillus sphaericus entomopathogenic biomass using brewery residues. Martins CD; De Aguiar PF; Sérvulo EF Appl Biochem Biotechnol; 2006 Mar; 131(1-3):659-67. PubMed ID: 18563643 [TBL] [Abstract][Full Text] [Related]
50. Control of mosquitoes in catch basins in Connecticut with Bacillus thuringiensis israelensis, Bacillus sphaericus, [corrected] and spinosad. Anderson JF; Ferrandino FJ; Dingman DW; Main AJ; Andreadis TG; Becnel JJ J Am Mosq Control Assoc; 2011 Mar; 27(1):45-55. PubMed ID: 21476447 [TBL] [Abstract][Full Text] [Related]
51. Laboratory studies on the predatory potential of dragon-fly nymphs on mosquito larvae. Singh RK; Dhiman RC; Singh SP J Commun Dis; 2003 Jun; 35(2):96-101. PubMed ID: 15562955 [TBL] [Abstract][Full Text] [Related]
52. Field trials with Vectolex (Bacillus sphaericus) and Vectobac (Bacillus thuringiensis (H-14)) against Anopheles gambiae and Culex quinquefasciatus breeding in Zaire. Karch S; Manzambi ZA; Salaun JJ J Am Mosq Control Assoc; 1991 Jun; 7(2):176-9. PubMed ID: 1895075 [TBL] [Abstract][Full Text] [Related]
53. Evaluation of long-lasting microbial larvicide for malaria vector control in Kenya. Afrane YA; Mweresa NG; Wanjala CL; Gilbreath Iii TM; Zhou G; Lee MC; Githeko AK; Yan G Malar J; 2016 Dec; 15(1):577. PubMed ID: 27903292 [TBL] [Abstract][Full Text] [Related]
54. Efficacy of the vegetative cells of Lysinibacillus sphaericus for biological control of insecticide-resistant Aedes aegypti. Rojas-Pinzón PA; Dussán J Parasit Vectors; 2017 May; 10(1):231. PubMed ID: 28490350 [TBL] [Abstract][Full Text] [Related]
55. Effect of inactivation by sunlight on the larvicidal activities of mosquitocidal Bacillus thuringiensis H-14 isolates from Nigerian soils. Obeta JA J Commun Dis; 1996 Jun; 28(2):94-100. PubMed ID: 8810143 [TBL] [Abstract][Full Text] [Related]
56. Larvicidal and Pupicidal Activities of Alizarin Isolated from Roots of Rubia cordifolia Against Culex quinquefasciatus Say and Aedes aegypti (L.) (Diptera: Culicidae). Gandhi MR; Reegan AD; Ganesan P; Sivasankaran K; Paulraj MG; Balakrishna K; Ignacimuthu S; Al-Dhabi NA Neotrop Entomol; 2016 Aug; 45(4):441-8. PubMed ID: 27004695 [TBL] [Abstract][Full Text] [Related]
57. Laboratory evaluations of formulations of Arosurf MSF and Bacillus sphaericus against larvae and pupae of Culex quinquefasciatus. Levy R; Putnam JL; Miller TW J Am Mosq Control Assoc; 1986 Jun; 2(2):233-6. PubMed ID: 3507499 [No Abstract] [Full Text] [Related]
58. Laboratory evaluation of Bacillus sphaericus recycling in mosquito larvae. Labib IM; Mohamad AA J Egypt Soc Parasitol; 2003 Aug; 33(2):425-36. PubMed ID: 14964657 [TBL] [Abstract][Full Text] [Related]
59. Mosquito host range and field activity of Bacillus sphaericus isolate 2297 (serotype 25). Lacey LA; Lacey CM; Peacock B; Thiery I J Am Mosq Control Assoc; 1988 Mar; 4(1):51-6. PubMed ID: 2903904 [TBL] [Abstract][Full Text] [Related]
60. [Enhancement of the efficacy of Bacillus sphaericus during its encapsulation by Tetrahymena pyriformis infusorians]. Ganushkina LA; Iakubovich IIa; Azizbekian RR; Minenkova IB; Chernov IuV; Kukina IV; Sergiev VP Med Parazitol (Mosk); 1997; (3):20-2. PubMed ID: 9411182 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]