These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 688372)

  • 21. The maintenance of resting potentials in glycerol-treated muscle fibres.
    Eisenberg RS; Howell JN; Vaughan PC
    J Physiol; 1971 May; 215(1):95-102. PubMed ID: 5579685
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effects of glycerol and urea on the ultrastructure and contractility of fast and slow rat skeletal muscles.
    Krolenko SA; Karpenko DO
    Gen Physiol Biophys; 1983 Oct; 2(5):409-24. PubMed ID: 6678774
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A quantitative estimation of components in crayfish muscle fibres by stereological methods.
    Uhrík B; Novotová M; Zachar J
    Pflugers Arch; 1980 Sep; 387(3):281-6. PubMed ID: 7191992
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Eccentric exercise-induced morphological changes in the membrane systems involved in excitation-contraction coupling in rat skeletal muscle.
    Takekura H; Fujinami N; Nishizawa T; Ogasawara H; Kasuga N
    J Physiol; 2001 Jun; 533(Pt 2):571-83. PubMed ID: 11389213
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Effects of hypertonic solutions on the excitation-contraction coupling of the skeletal muscle fibre of the crab. I. Electrical and mechanical aspects (author's transl)].
    Brulé G; Guilbault P; Haudecoeur G
    J Physiol (Paris); 1977 Oct; 73(5):663-74. PubMed ID: 926044
    [No Abstract]   [Full Text] [Related]  

  • 26. Transverse tubular system in glycerol-treated skeletal muscle.
    Eisenberg B; Eisenberg RS
    Science; 1968 Jun; 160(3833):1243-4. PubMed ID: 5648264
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Properties of the vertebrate skeletal muscle tubular system as a sealed compartment.
    Launikonis BS; Stephenson DG
    Cell Biol Int; 2002; 26(10):921-9. PubMed ID: 12421583
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Persistence of excitation contraction coupling in "slow" muscle fibres after a treatment that destroys transverse tubules in "twitch" fibres.
    Stefani E; Steinbach A
    Nature; 1968 May; 218(5142):681-2. PubMed ID: 5655960
    [No Abstract]   [Full Text] [Related]  

  • 29. Excitation-contraction uncoupling. The effect of hyperosomolar glycerol solution and antrolene sodium on mammalian muscle in vitro.
    Kurihara T; Brooks JE
    Arch Neurol; 1975 Feb; 32(2):92-7. PubMed ID: 164844
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The course of morphological and functional changes induced by glycerol solutions.
    López JR; Taylor SR
    Acta Cient Venez; 1985; 36(2):203-4. PubMed ID: 3879570
    [No Abstract]   [Full Text] [Related]  

  • 31. EVIDENCE FOR ANION-PERMSELECTIVE MEMBRANE IN CRAYFISH MUSCLE FIBERS AND ITS POSSIBLE ROLE IN EXCITATION-CONTRACTION COUPLING.
    GIRARDIER L; REUBEN JP; BRANDT PW; GRUNDFEST H
    J Gen Physiol; 1963 Sep; 47(1):189-214. PubMed ID: 14060445
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of glycerol treatment on the calcium current of frog skeletal muscle.
    Siri LN; Sánchez JA; Stefani E
    J Physiol; 1980 Aug; 305():87-96. PubMed ID: 6969308
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intracellular generated potentials during excitation-contraction coupling in muscle.
    Strickholm A
    J Neurobiol; 1974; 5(2):161-87. PubMed ID: 4546146
    [No Abstract]   [Full Text] [Related]  

  • 34. Membrane charge moved at contraction thresholds in skeletal muscle fibres.
    Horowicz P; Schneider MF
    J Physiol; 1981 May; 314():595-633. PubMed ID: 6975815
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Speed of repolarization and morphology of glycerol-treated muscle fibres.
    Nakajima S; Nakajima Y; Peachey LD
    J Physiol; 1969 Feb; 200(2):115P-116P. PubMed ID: 5764386
    [No Abstract]   [Full Text] [Related]  

  • 36. The ionic mechanism of intracellular pH regulation in crayfish muscle fibres.
    Galler S; Moser H
    J Physiol; 1986 May; 374():137-51. PubMed ID: 3091812
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Anatomical distribution of voltage-dependent membrane capacitance in frog skeletal muscle fibers.
    Huang CL; Peachey LD
    J Gen Physiol; 1989 Mar; 93(3):565-84. PubMed ID: 2784827
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of Pb2+ ions on calcium currents and contractility in single muscle fibres of the crayfish.
    Zacharová D; Hencek M; Pavelková J; Lipská E
    Gen Physiol Biophys; 1993 Apr; 12(2):183-98. PubMed ID: 8405921
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Fiber-type morphology and function of the triads in frog (Rana esculenta) skeletal muscle)].
    Dauber W
    Z Mikrosk Anat Forsch; 1979; 93(3):512-36. PubMed ID: 316237
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrical properties of toad sartorius muscle fibres in summer and winter.
    Dulhunty AF; Gage PW
    J Physiol; 1973 May; 230(3):619-41. PubMed ID: 4197835
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.